Skip to main content

Advertisement

Log in

Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We previously demonstrated decreased expression of key genes regulating Cortisol biosynthesis in long-term hypoxic (LTH) sheep fetal adrenals compared to controls. We also showed that inhibition of the extracellular signal-regulated kinases (ERKs) with the mitogen-activated protein kinase (MEK)/ERK inhibitor UO126 limited adrenocorticotropic (ACTH)-induced Cortisol production in ovine fetal adrenocortical cells (FACs), suggesting a role for ERKs in Cortisol synthesis. This study was designed to determine whether the previously observed decrease in LTH cytochrome P4501 1A1/cytochrome P450c17 (CYP1 1A1/CYP17) in adrenal glands was maintained in vitro, and whether ACTH alone with or without UO126 treatment had altered the expression of CYP1 1A1, CYP17, and steroidogenic acute regulatory protein (StAR) in control versus LTH FACs. Ewes were maintained at high altitude (3820 m) from ≈40 days of gestation (dG). At 138 to 141 dG, fetal adrenal glands were collected from LTH (n = 5) and age-matched normoxic controls (n = 6). Fetal adrenocortical cells were challenged with ACTH (10−8 M) with or without UOI26 (10 (J.M) for 18 hours. Media samples were collected for Cortisol analysis and messenger RNA (mRNA) for CYP1 1A1, CYP1 7, and StAR was quantified by quantitative real-time polymerase chain reaction. Cortisol was higher in the LTH versus control (P <.05). StAR mRNA was decreased in LTH versus control (P <.05). U0126 alone had no effect on mRNA in either group. UO126 prevented the increase in CYP1 1A1 and CYP17 in control FACs. Basal CYP1 1A1 and CYP1 7 were not different in LTH versus control. ACTH increased CYP1 1A1 and CYP17 only in control FACs (P <.05). U1026 attenuated the ACTH response indicative of a role for ERK in CYP1 1A1 and CYP17 expression. ACTH may require additional factors in FACs to fully regulate StAR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liggins GC. The role of Cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994;6(2):141–150.

    CAS  PubMed  Google Scholar 

  2. Liggins GC, Fairclough RJ, Grieves SA, Kendall JZ, Knox BS. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res. 1973;29:111–159.

    CAS  PubMed  Google Scholar 

  3. Simpson ER, Waterman MR. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol. 1988;50:427–440.

    CAS  PubMed  Google Scholar 

  4. Sewer MB, Nguyen VQ, Huang CJ, Tucker PW, Kagawa N, Waterman MR. Transcriptional activation of human CYP17 in H295 R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology. 2002;143(4):1280–1290.

    CAS  PubMed  Google Scholar 

  5. Ishimoto H, Jaffe RB. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev. 2011;32(3):317–355.

    CAS  PubMed  Google Scholar 

  6. Hiwatashi A, Ichikawa Y. Physicochemical properties of reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase from bovine adrenocortical microsomes. Biochim Bio-phys Acta. 1979;580(1):44–63.

    CAS  Google Scholar 

  7. Mitani F, Shimizu T, Ueno R, et al. Cytochrome P-45011 beta and P-450scc in adrenal cortex: zonal distribution and intramitochon-drial localization by the horseradish peroxidase-labeled antibody method. J Histochem Cytochem. 1982;30(10):1066–1074.

    CAS  PubMed  Google Scholar 

  8. Simpson ER. Cholesterol side-chain cleavage, cytochrome P450, and the control of steroidogenesis. Mol Cell Endocrinol. 1979;13(3):213–227.

    CAS  PubMed  Google Scholar 

  9. Waterman MR, Simpson ER. Regulation of the biosynthesis of cytochromes P-450 involved in steroid hormone synthesis. Mol Cell Endocrinol. 1985;39(2):81–89.

    CAS  PubMed  Google Scholar 

  10. Mesiano S, Coulter CL, Jaffe RB. Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17 alpha-hydroxylase/17, 20-lyase, and 3 beta-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation. J Clin Endocrinol Metab. 1993;77(5):1184–1189.

    CAS  PubMed  Google Scholar 

  11. Manna PR, Dyson MT, Eubank DW, et al. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol. 2002;16(1):184–199.

    CAS  PubMed  Google Scholar 

  12. Yamazaki T, Matsuoka C, Gendou M, et al. Mitochondrial processing of bovine adrenal steroidogenic acute regulatory protein. Biochim Biophys Acta. 2006;1764(10):1561–1567.

    CAS  PubMed  Google Scholar 

  13. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213.

    CAS  PubMed  Google Scholar 

  14. Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;15(6):321–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Papadopoulos V, Liu J, Culty M. Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol. 2007;265-266:59–64.

    CAS  PubMed  Google Scholar 

  16. Miller WL. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta. 2007;1771(6):663–676.

    CAS  PubMed  Google Scholar 

  17. Varvarigou A, Beratis NG, Makri M, Vagenakis AG. Increased levels and positive correlation between erythropoietin and hemoglobin concentrations in newborn children of mothers who are smokers. J Pediatr. 1994;124(3):480–482.

    CAS  PubMed  Google Scholar 

  18. Julian CG. High altitude during pregnancy. Clin Chest Med. 2011;32(1):21–31. vii.

    PubMed  Google Scholar 

  19. Tal R. The role of hypoxia and hypoxia-inducible factor-1 alpha in preeclampsia pathogenesis. Biol Reprod. 2012;87(6):134.

    PubMed  Google Scholar 

  20. Giussani DA, McGarrigle HH, Moore PJ, Bennet L, Spencer JA, Hanson MA. Carotid sinus nerve section and the increase in plasma Cortisol during acute hypoxia in fetal sheep. J Physiol. 1994;477(pt 1):75–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Myers DA, Bell PA, Hyatt K, Mlynarczyk M, Ducsay CA. Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1178–R1184.

    CAS  PubMed  Google Scholar 

  22. Monau TR, Vargas VE, King N, Yellon SM, Myers DA, Ducsay CA. Long-term hypoxia increases endothelial nitric oxide synthase expression in the ovine fetal adrenal. Reprod Sci. 2009;16(9):865–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng PC. Effect of stress on the hypothalamic-pituitary-adrenal axis in the fetus and newborn. J Pediatr. 2011;158(suppl 2):e41–e43.

    CAS  PubMed  Google Scholar 

  24. Wood CE, Rabaglino MB, Chang EI, Denslow N, Keller-Wood M, Richards E. The Genomics of the fetal hypothalamic cellular response to transient hypoxia: endocrine, immune, and metabolic responses. Physiol Genomics. 2013;45(13):521–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Unno N, Giussani DA, Hing WK, Ding XY, Collins JH. Natha-nielsz PW. Changes in adrenocorticotropin and Cortisol responsiveness after repeated partial umbilical cord occlusions in the late gestation ovine fetus. Endocrinology. 1997;138(1):259–263.

    CAS  PubMed  Google Scholar 

  26. Gottfried AW. Intellectual consequences of perinatal anoxia. Psychol Bull. 1973;80(3):231–242.

    CAS  PubMed  Google Scholar 

  27. Akagi K, Challis JR. Hormonal and biophysical responses to acute hypoxemia in fetal sheep at 0.7-0.8 gestation. Can J Physiol Pharmacol. 1990;68(12):1527–1532.

    CAS  PubMed  Google Scholar 

  28. Boddy K, Jones CT, Mantell C, Ratcliffe JG, Robinson JS. Changes in plasma ACTH and corticosteroid of the maternal and fetal sheep during hypoxia. Endocrinology. 1974;94(2):588–591.

    CAS  PubMed  Google Scholar 

  29. Giussani DA, Riquelme RA, Moraga FA, et al. Chemoreflex and endocrine components of cardiovascular responses to acute hypoxemia in the llama fetus. Am J Physiol. 1996;271(1 pt 2):R73–R83.

    CAS  PubMed  Google Scholar 

  30. Adachi K, Umezaki H, Kaushal KM, Ducsay CA. Long-term hypoxia alters ovine fetal endocrine and physiological responses to hypotension. Am J Physiol Regul Integr Comp Physiol. 2004;287(1):R209–R217.

    CAS  PubMed  Google Scholar 

  31. Imamura T, Umezaki H, Kaushal KM, Ducsay CA. Long-term hypoxia alters endocrine and physiologic responses to umbilical cord occlusion in the ovine fetus. J Soc Gynecol Investig. 2004;11(3):131–140.

    CAS  PubMed  Google Scholar 

  32. Myers DA, Hyatt K, Mlynarczyk M, Bird IM, Ducsay CA. Long-term hypoxia represses the expression of key genes regulating Cortisol biosynthesis in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1707-R1714.

    Google Scholar 

  33. Monau TR, Vargas VE, Zhang L, Myers DA, Ducsay CA. Nitric oxide inhibits ACTH-induced Cortisol production in near-term, long-term hypoxic ovine fetal adrenocortical cells. Reprod Sci. 2010;17(10):955–962.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vargas VE, Kaushal KM, Monau T, Myers DA, Ducsay CA. Long-term hypoxia enhances Cortisol biosynthesis in near-term ovine fetal adrenal cortical cells. Reprod Sci. 2011;18(3):277–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Boulton TG, Cobb MH. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 1991;2(5):357–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cobb MH, Boulton TG, Robbins DJ. Extracellular signal-regulated kinases: ERKs in progress. Cell Regul.1991;2(12):965–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seger R, Ahn NG, Boulton TG, et al. Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc Natl Acad Sci USA. 1991;88(14):6142–6146.

    CAS  PubMed  Google Scholar 

  38. Torii S, Nakayama K, Yamamoto T, Nishida E. Regulatory mechanisms and function of ERK MAP kinases. J Biochem. 2004;136(5):557–561.

    CAS  PubMed  Google Scholar 

  39. Ferreira JG, Cruz CD, Neves D, Pignatelli D. Increased extracellular signal regulated kinases phosphorylation in the adrenal gland in response to chronic ACTH treatment. J Endocrinol. 2007;192(3):647–658.

    CAS  PubMed  Google Scholar 

  40. Vargas VE, Kaushal KM, Monau TR, Myers DA, Ducsay CA. Extracellular signal-regulated kinases (ERK1/2) signaling pathway plays a role in Cortisol secretion in the long-term hypoxic ovine fetal adrenal near term. Am J Physiol Regul Integr Comp Physiol. 2013;304(8):R636–R643.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Warnes KE, McMillen IC, Robinson JS, Coulter CL. Differential actions of metyrapone on the fetal pituitary-adrenal axis in the sheep fetus in late gestation. Biol Reprod. 2004;71(2):620–628.

    CAS  PubMed  Google Scholar 

  42. Poderoso C, Maloberti P, Duarte A, et al. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity. Mol Cell Endocrinol. 2009;300(1-2):37–42.

    CAS  PubMed  Google Scholar 

  43. Ducsay CA, Mlynarczyk M, Kaushal KM, Hyatt K, Hanson K, Myers DA. Long-term hypoxia enhances ACTH response to argi-nine vasopressin but not corticotropin-releasing hormone in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R892–R899.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Myers DA, Ducsay CA. Adrenocortical and adipose responses to high-altitude-induced, long-term hypoxia in the ovine fetus. J Pregnancy. 2012;2012:681306.

    Google Scholar 

  45. Ducsay CA, Furuta K, Vargas VE, et al. Leptin receptor antagonist treatment ameliorates the effects of long-term maternal hypoxia on adrenal expression of key steroidogenic genes in the ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2013;304(6):R435–R442.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haynes RC Jr. Koritz SB, Peron FG. Influence of adenosine 3’,5’-monophosphate on corticoid production by rat adrenal glands. J Biol Chem. 1959;234(6):1421–1423.

    CAS  PubMed  Google Scholar 

  47. Cooke BA. Signal transduction involving cyclic AMP-dependent and cyclic AMP-independent mechanisms in the control of steroidogenesis. Mol Cell Endocrinol. 1999;151(1-2):25–35.

    CAS  PubMed  Google Scholar 

  48. Haynes RC Jr. The activation of adrenal phosphorylase by the adrenocorticotropic hormone. J Biol Chem. 1958;233(5):1220–1222.

    CAS  PubMed  Google Scholar 

  49. Sewer MB, Waterman MR. cAMP-dependent transcription of steroidogenic genes in the human adrenal cortex requires a dual-specificity phosphatase in addition to protein kinase A. J Mol Endocrinol. 2002;29(1):163–174.

    CAS  PubMed  Google Scholar 

  50. Peterson JK, Moran F, Conley AJ, Bird IM. Zonal expression of endothelial nitric oxide synthase in sheep and rhesus adrenal cortex. Endocrinology. 2001;142(12):5351–5363.

    CAS  PubMed  Google Scholar 

  51. Cote M, Muyldermans J, Chouinard L, Gallo-Payet N. Involvement of tyrosine phosphorylation and MAPK activation in the mechanism of action of ACTH, angiotensin II and vasopressin. Endocr Res. 1998;24(3-4):415–419.

    CAS  PubMed  Google Scholar 

  52. Watanabe G, Pena P, Albanese C, Wilsbacher LD, Young JB, Pestell RG. Adrenocorticotropin induction of stress-activated protein kinase in the adrenal cortex in vivo. J Biol Chem. 1997;272(32):20063–20069.

    CAS  PubMed  Google Scholar 

  53. Gyles SL, Burns CJ, Whitehouse BJ, et al. ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J Biol Chem. 2001;276(37):34888–34895.

    CAS  PubMed  Google Scholar 

  54. Le T, Schimmer BP. The regulation of MAPKs in Y1 mouse adrenocortical tumor cells. Endocrinology. 2001;142(10):4282–4287.

    CAS  PubMed  Google Scholar 

  55. Ferreira JG, Cruz C, Vinson GP, Pignatelli D. ACTH modulates ERK phosphorylation in the adrenal gland in a time-dependent manner. Endocr Res. 2004;30(4):661–666.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Ducsay PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, V.E., Myers, D.A., Kaushal, K.M. et al. Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia. Reprod. Sci. 25, 230–238 (2018). https://doi.org/10.1177/1933719117707056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117707056

Keywords

Navigation