Skip to main content

Advertisement

Log in

Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Many parallels exist between growth and development of the placenta and that of cancer. One parallel is shared expression of antigens that may have functional importance and may be recognized by the immune system. Here, we characterize expression and regulation of one such antigen, Trophoblast glycoprotein (TPGB; also called 5T4), in the placenta across gestation, in placentas of preeclamptic (PE) pregnancies, and in purified microvesicles and exosomes.

Methods

Trophoblast glycoprotein expression was analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immuno-histochemistry. Regulation of 5T4 in cytotrophoblast cells was examined under either differentiating conditions of epidermal growth factor or under varying oxygen conditions. Microvesicles and exosomes were purified from supernatant of cultured and perfused placentas.

Results

Trophoblast glycoprotein expression was prominent at the microvillus surface of syncytio-trophoblast and on the extravillous trophoblast cells, with minimal expression in undifferentiated cytotrophoblasts and normal tissues. Trophoblast glycoprotein expression was elevated in malignant tumors. In cytotrophoblasts, 5T4 was induced by in vitro differentiation, and its messenger RNA (mRNA) was increased under conditions of low oxygen. PE placentas expressed higher 5T4 mRNA than matched control placentas. Trophoblast glycoprotein was prominent within shed placental microvesicles and exosomes.

Conclusion

Given the potential functional and known immunological importance of 5T4 in cancer, these studies reveal a class of proteins that may influence placental development and/or sensitize the maternal immune system. In extravillous trophoblasts, 5T4 may function in epithelial-to-mesenchymal transition during placentation. The role of syncytiotrophoblast 5T4 is unknown, but its abundance in shed syncytial vesicles may signify route of sensitization of the maternal immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pijnenborg R, Dixon G, Robertson WB, Brosens I. Trophoblast invasion of human decidua from 8-18 weeks of pregnancy. Placenta. 1980;1(1):3–19.

    CAS  PubMed  Google Scholar 

  2. Harris LK, Aplin JD. Vascular remodeling and extracellular matrix breakdown in the uterine spiral arteries during pregnancy. Reprod Sci. 2007;14(suppl 8):28–34.

    PubMed  Google Scholar 

  3. Bulmer JN, Innes BA, Levey J, Robson SC, Lash GE. The role of vascular smooth muscle cell apoptosis and migration during uterine spiral artery remodeling in normal human pregnancy. FASEB J. 2012;26(7):2975–2985.

    CAS  PubMed  Google Scholar 

  4. Pijnenborg R, Robertson WB, Brosnens I, Dixon G. Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta.1981;2(1):71–91.

    CAS  PubMed  Google Scholar 

  5. Murray MJ, Lessey BA. Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin Reprod Endocrinol. 1999;17(3):275–290.

    CAS  PubMed  Google Scholar 

  6. Strickland S, Richards WG. Invasion of the trophoblasts. Cell. 1992;71(3):355–357.

    CAS  PubMed  Google Scholar 

  7. Perry JK, Lins RJ, Lobie PE, Mitchell MD. Regulation of invasive growth: similar epigenetic mechanisms underpin tumor progression and implantation in human pregnancy. Clin Sci (Lond). 2010;118(7):451–457.

    Google Scholar 

  8. Jordan NV, Johnson GL, Abell AN. Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle. 2011;10(17):2865–2873.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilczynski JR. Cancer and pregnancy share similar mechanisms of immunological escape. Chemotherapy. 2006;52(3):107–110.

    CAS  PubMed  Google Scholar 

  10. Jungbluth AA, Silva WA Jr, Iversen K, et al. Expression of cancer-testis (CT) antigens in placenta. Cancer Immun. 2007;7: 15.

    Google Scholar 

  11. Koslowski M, Sahin U, Mitnacht-Kraus R, Seitz G, Huber C, Tureci O. A placenta-specific gene ectopically activated in many human cancers is essentially involved in malignant cell processes. Cancer Res. 2007;67(19):9528–9534.

    CAS  PubMed  Google Scholar 

  12. Butterfield LH. Cancer vaccines. BMJ. 2015;350:h988.

    PubMed  PubMed Central  Google Scholar 

  13. Hole N, Stern PL. A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer. 1988;57(3):239–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. King KW, Sheppard FC, Westwater C, Stern PL, Myers KA. Organisation of the mouse and human 5T4 oncofoetal leucine-rich glycoprotein genes and expression in foetal and adult murine tissues. Biochim Biophys Acta. 1999;1445(3):257–270.

    CAS  PubMed  Google Scholar 

  15. Myers KA, Rahi-Saund V, Davison MD, Young JA, Cheater AJ, Stern PL. Isolation of a cDNA encoding 5T4 oncofetal trophoblast glycoprotein. An antigen associated with metastasis contains leucine-rich repeats. J Biol Chem. 1994;269(12):9319–9324.

    CAS  PubMed  Google Scholar 

  16. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11(6):725–732.

    CAS  PubMed  Google Scholar 

  17. Awan A, Lucie MR, Shaw DM, et al. 5T4 interacts with TIP-2/ GIPC, a PDZ protein, with implications for metastasis. Biochem Biophys Res Commun. 2002;290(3):1030–1036.

    CAS  PubMed  Google Scholar 

  18. Carsberg CJ, Myers KA, Stern PL. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. Int J Cancer. 1996;68(1):84–92.

    CAS  PubMed  Google Scholar 

  19. Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G, et al. Waif1/ 5T4 inhibits Wnt/p-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Devel Cell. 2011;21(6):1129–1143.

    CAS  Google Scholar 

  20. Mitchell PJ, Welton J, Staffurth J, et al. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med. 2009;7:4.

    Google Scholar 

  21. Petroff MG, Phillips TA, Ka H, Pace JL, Hunt JS. Isolation and culture of term human trophoblast cells. Methods Mol Med. 2006;121:203–217.

    PubMed  Google Scholar 

  22. Holets LM, Carletti MZ, Kshirsagar SK, Christenson LK, Petroff MG. Differentiation-induced post-transcriptional control of B7-H1 in human trophoblast cells. Placenta. 2009;30(l):48–55.

    Google Scholar 

  23. Graham CH, Hawley TS, Hawley RG, et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res. 1993;206(2):204–211.

    CAS  PubMed  Google Scholar 

  24. Straszewski-Chavez SL, Abrahams VM, Alvero AB, et al. The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line, Swan 71. Placenta. 2009;30(11):939–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 322.

    Google Scholar 

  26. Kshirsagar SK, Alam SM, Jasti S, et al. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012;33(12):982–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyp-ing of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine. 2011;7(6):780–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dragovic RA, Collett GP, Hole P, et al. Isolation of syncytiotro-phoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods. 2015;87:64–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Holets LM, Hunt JS, Petroff MG. Trophoblast CD274 (B7-H1) is differentially expressed across gestation: influence of oxygen concentration. Biol Reprod. 2006;74(2):352–358.

    CAS  PubMed  Google Scholar 

  30. Linscheid C, Heitmann E, Singh P, et al. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women. Placenta. 2015;36(8):832–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morrish DW, Bhardwaj D, Dabbagh LK, Marusyk H, Siy O. Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J Clin Endocrinol Metab. 1987;65(6):1282–1290.

    CAS  PubMed  Google Scholar 

  32. Morrish DW, Dakour J, Li H. Functional regulation of human trophoblast differentiation. J Reprod Immunol. 1998;39(1-2):179–195.

    CAS  PubMed  Google Scholar 

  33. Jaffe R, Jauniaux E, Hustin J. Maternal circulation in the first-trimester human placenta—myth or reality? Am J Obstet Gynecol. 1997;176(3):695–705.

    CAS  PubMed  Google Scholar 

  34. Carsberg CJ, Myers KA, Evans GS, Allen TD, Stern PL. Metastasis-associated 5T4 oncofoetal antigen is concentrated at microvillus projections of the plasma membrane. J Cell Sci. 1995; 108(pt 8):2905–2916.

    CAS  PubMed  Google Scholar 

  35. Roberts JM, Escudero C. The placenta and preeclampsia. Pregnancy Hypertens. 2012;2(2):72–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–1172.

    CAS  PubMed  Google Scholar 

  37. Hole N, Stern PL. Isolation and characterization of 5T4, a tumor-associated antigen. Int J Cancer. 1990;45(1):179–184.

    CAS  PubMed  Google Scholar 

  38. Southall PJ, Boxer GM, Bagshawe KD, Hole N, Bromley M, Stern PL. Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer. 1990;61(1):89–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF. Cadherins in the human placenta—epithelial-mesenchymal transition (EMT) and placental development. Placenta. 2010;31(9):747–755.

    CAS  PubMed  Google Scholar 

  40. Southgate TD, McGinn OJ, Castro FV, et al. CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells. PLoS One. 2010;5(4):e9982.

    PubMed  PubMed Central  Google Scholar 

  41. McGinn OJ, Marinov G, Sawan S, Stern PL. CXCL12 receptor preference, signal transduction, biological response and the expression of 5T4 oncofoetal glycoprotein. J Cell Sci. 2012;125(pt 22):5467–5478.

    CAS  PubMed  Google Scholar 

  42. Zhao Y, Malinauskas T, Harlos K, Jones EY. Structural insights into the inhibition of Wnt signaling by cancer antigen 5T4/Wnt-activated inhibitory factor 1. Structure. 2014;22(4):612–620.

    PubMed  PubMed Central  Google Scholar 

  43. Schanz A, Baston-Bust D, Krussel JS, Heiss C, Janni W, Hess AP. CXCR7 and syndecan-4 are potential receptors for CXCL12 in human cytotrophoblasts. J Reprod Immunol.2011;89(1):18–25.

    CAS  PubMed  Google Scholar 

  44. Schanz A, Red-Horse K, Hess AP. Baston-Bust DM, Heiss C, Krussel JS. Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression. Placenta. 2014;35(12):1089–1094.

    CAS  Google Scholar 

  45. Pollheimer J, Loregger T, Sonderegger S, et al. Activation of the canonical wingless/T-Cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol. 2006;168(4):1134–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157(6):2111–2122.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nelson DM, Johnson RD, Smith SD, Anteby EY, Sadovsky Y. Hypoxia limits differentiation and up-regulates expression and activity of prostaglandin H synthase 2 in cultured trophoblast from term human placenta. Am J Obstet Gynecol. 1999;180(4):896–902.

    CAS  PubMed  Google Scholar 

  48. Welton JL, Khanna S, Giles PJ, et al. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics. 2010;9(6):1324–1338.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013;191(11):5515–5523.

    Google Scholar 

  50. Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol. 2006;176(3):1534–1542.

    CAS  PubMed  Google Scholar 

  51. Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.

    CAS  PubMed  Google Scholar 

  52. Erlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J Clin Invest. 2007;117(5):1399–1411.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moldenhauer LM, Diener KR, Thring DM, Brown MP. Hay-ball JD, Robertson SA. Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J Immunol. 2009;182(12):8080–8093.

    CAS  PubMed  Google Scholar 

  54. Abumaree MH, Stone PR, Chamley LW. The effects of apoptotic, deported human placental trophoblast on macrophages: Possible consequences for pregnancy. J Reprod Immunol. 2006;72(1-2):33–45.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Petroff PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S.M.K., Jasti, S., Kshirsagar, S.K. et al. Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod. Sci. 25, 185–197 (2018). https://doi.org/10.1177/1933719117707053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117707053

Keywords

Navigation