Skip to main content

Advertisement

Log in

Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Development of adhesions commonly occurs in association with surgery for endometriosis. Even in the absence of surgery, women with endometriosis appear to be at an enhanced risk of developing adhesions. In the current study, we utilized a chimeric mouse model of experimental endometriosis in order to examine the role of inflammasome activation in the development of postsurgical adhesions. Mice were randomized to receive peritoneal injections of human endometrial tissue fragments or endometrial tissue conditioned media (CM) from women with or without endometriosis 16 hours after ovariectomy and placement of an estradiol-releasing silastic capsule. A subset of mice receiving CM was also treated with interleukin (IL) I receptor antagonist (IL-Ira). Our studies demonstrate that peritoneal injection of endometrial tissue fragments near the time of surgery resulted in extensive adhesive disease regardless of tissue origin. However, adhesion scores were significantly higher in mice receiving CM from tissues acquired from patients with endometriosis compared to control tissue CM (P =.0001). Cytokine bead array analysis of endometrial CM revealed enhanced expression of IL-Iβ from patients with endometriosis compared to controls (P <.01). Finally, the ability of human tissue CM to promote adhesive disease was dramatically reduced in mice cotreated with IL-Ira (P <.0001). Our data implicate enhanced expression of IL-Iβ in women with endometriosis as a potential causal factor in their increased susceptibility of developing postsurgical adhesions. Thus, targeting inflammasome activation may be an effective strategy for the prevention of surgical adhesions in patients with endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  Google Scholar 

  2. Herington JL, Crispens MA, Carvalho-Macedo AC, et al. Development and prevention of postsurgical adhesions in a chimeric mouse model of experimental endometriosis. Fertil Steril. 2011;95(4):1295–301 e1.

    Article  Google Scholar 

  3. Reis FM, Petraglia F, Taylor RN. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update. 2013;19(4):406–418.

    Article  CAS  Google Scholar 

  4. Wieser F, Tempfer C, Schneeberger C, van Trotsenburg M, Huber J, Wenzl R. Interleukin-1 receptor antagonist polymorphism in women with peritoneal adhesions. BJOG. 2002;109(11):1298–1300.

    Article  CAS  Google Scholar 

  5. Fortin CN, Saed GM, Diamond MP. Predisposing factors to postoperative adhesion development. Hum Reprod Update. 2015;21(4):536–551.

    Article  Google Scholar 

  6. Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models [Published online July 14, 2016]. Reprod Toxicol. 2016.

    Google Scholar 

  7. Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG. Immune interactions in endometriosis. Expert Rev Clin Immunol. 2011;7(5):611–626.

    Article  Google Scholar 

  8. Bruner-Tran KL, Herington JL, Duleba AJ, Taylor HS, Osteen KG. Medical management of endometriosis: emerging evidence linking inflammation to disease pathophysiology. Minerva Ginecol. 2013;65(2):199–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Imudia AN, Kumar S, Saed GM, Diamond MP. Pathogenesis of intra-abdominal and pelvic adhesion development. Semin Reprod Med. 2008;26(4):289–297.

    Article  CAS  Google Scholar 

  10. Herington JL, Glore DR, Lucas JA, Osteen KG, Bruner-Tran KL. Dietary fish oil supplementation inhibits formation of endometriosis-associated adhesions in a chimeric mouse model. Fertil Steril. 2013;99(2):543–550.

    Article  CAS  Google Scholar 

  11. De Boer AA, Monk JM, Liddle DM, et al. Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b(+) macrophages. J Nutr Biochem. 2016;34:61–72.

    Article  Google Scholar 

  12. Williams-Bey Y, Boularan C, Vural A, et al. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PloS One. 2014;9(6):e97957.

    Article  Google Scholar 

  13. Bullon P, Navarro JM. Inflammasome as a key pathogenic mechanism in endometriosis [Published online July 8, 2016]. Curr Drug Targets. 2016.

    Google Scholar 

  14. Gaidt MM, Hornung V. Alternative inflammasome activation enables IL-1beta release from living cells. Curr Opin Immunol. 2016;44:7–13.

    Article  Google Scholar 

  15. Bullon P, Alcocer-Gomez E, Carrion AM, et al. AMPK phosphorylation modulates pain by activation of NLRP3 inflammasome. Antioxid Redox Signal. 2016;24(3):157–170.

    Article  CAS  Google Scholar 

  16. Bruner-Tran KL, Webster-Clair D, Osteen KG. Experimental endometriosis: the nude mouse as a xenographic host. Ann N Y Acad Sci. 2002;955:328–339; discussion 40–2, 96–406.

    Article  Google Scholar 

  17. Krikun G, Hu Z, Osteen K, et al. The immunoconjugate “icon” targets aberrantly expressed endothelial tissue factor causing regression of endometriosis. Am J Pathol. 2010;176(2):1050–1056.

    Article  CAS  Google Scholar 

  18. Budwit-Novotny DA, McCarty KS, Cox EB, et al. Immunohisto-chemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46(10):5419–5425.

    CAS  Google Scholar 

  19. de Ziegler D, Pirtea P, Galliano D, Cicinelli E, Meldrum D. Optimal uterine anatomy and physiology necessary for normal implantation and placentation. Fertil Steril. 2016;105(4):844–854.

    Article  Google Scholar 

  20. Houshdaran S, Nezhat CR, Vo KC, Zelenko Z, Irwin JC, Giudice LC. Aberrant endometrial DNA methylome and associated gene expression in women with endometriosis. Biol Reprod. 2016;95(5):93.

    Article  Google Scholar 

  21. Zeitoun K, Takayama K, Sasano H, et al. Deficient 17beta-hydroxysteroid dehydrogenase type 2 expression in endometriosis: failure to metabolize 17beta-estradiol. J Clin Endocrinol Metab. 1998;83(12):4474–4480.

    CAS  PubMed  Google Scholar 

  22. Bruner-Tran KL, Eisenberg E, Yeaman GR, Anderson TA, McBean J, Osteen KG. Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establishment of experimental endometriosis in nude mice. J Clin Endo-crinol Metab. 2002;87(10):4782–4791.

    Article  CAS  Google Scholar 

  23. Bruner-Tran KL, Resuehr D, Ding T, Lucas JA, Osteen KG. The role of endocrine disruptors in the epigenetics of reproductive disease and dysfunction: potential relevance to humans. Curr Obstet Gynecol Rep. 2012;1(3):116–123.

    Article  Google Scholar 

  24. Igarashi TM, Bruner-Tran KL, Yeaman GR, et al. Reduced expression of progesterone receptor-B in the endometrium of women with endometriosis and in cocultures of endometrial cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fertil Steril. 2005;84(1):67–74.

    Article  CAS  Google Scholar 

  25. Resuehr D, Glore DR, Taylor HS, Bruner-Tran KL, Osteen KG. Progesterone-dependent regulation of endometrial cannabinoid receptor type 1 (CB1-R) expression is disrupted in women with endometriosis and in isolated stromal cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Fertil Steril. 2012;98(4):948–956.e1.

    Article  CAS  Google Scholar 

  26. Awonuga AO, Saed GM, Diamond MP. Laparoscopy in gynecologic surgery: adhesion development, prevention, and use of adjunctive therapies. Clin Obstet Gynecol. 2009;52(3):412–422.

    Article  Google Scholar 

  27. Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflamma-some: from a danger signal sensor to a regulatory node of oxida-tive stress and inflammatory diseases. Redox Biol. 2015;4: 296–307.

    Article  CAS  Google Scholar 

  28. D’Ippolito S, Tersigni C, Marana R, et al. Inflammosome in the human endometrium: further step in the evaluation of the “maternal side”. Fertil Steril. 2016;105(1):111–118.e1–4.

    Article  Google Scholar 

  29. Han SJ, Jung SY, Wu SP, et al. Estrogen receptor beta modulates apoptosis complexes and the inflammasome to drive the patho-genesis of endometriosis. Cell. 2015;163(4):960–974.

    Article  CAS  Google Scholar 

  30. Hong W, Hu S, Zou J, et al. Peroxisome proliferator-activated receptor gamma prevents the production of NOD-like receptor family, pyrin domain containing 3 inflammasome and interleukin 1beta in HK-2 renal tubular epithelial cells stimulated by monosodium urate crystals. Mol Med Rep. 2015;12(4):6221–6226.

    Article  CAS  Google Scholar 

  31. Legrand-Poels S, Esser N, L’ Homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflamma-some in obesity/type 2 diabetes. Biochem Pharmacol. 2014;92(1):131–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Osteen PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stocks, M.M., Crispens, M.A., Ding, T. et al. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions. Reprod. Sci. 24, 1121–1128 (2017). https://doi.org/10.1177/1933719117698584

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117698584

Keywords

Navigation