Skip to main content
Log in

Reproductive Microbiomes: A New Thread in the Microbial Network

Reproductive Sciences Aims and scope Submit manuscript

Abstract

Almost every part of our body has a coevolved microbial community. The expressed microbial genes comprise the various microbiomes that play important roles in normal physiology and development. The various microbiomes are separate, yet often connected, with the species composition of one affecting others. The female reproductive system microbiomes (eg, vaginal, placental, and mammary/milk) remain less well explored than the gut microbiome although they comprise a large proportion of the female microbial network. This review examines the evidence for interconnectivity between the female reproductive microbiomes, other maternal microbiomes, and developing infant microbiomes and the potential roles of each in health and disease. Disruptions in maternal microbiomes may be linked to pregnancy complications and maternal, fetal, and neonatal health. The diversity of the vaginal microbiome’s makeup, which appears to vary across ethnicity, has led researchers to reconsider the idea of a “healthy” or “normal” vaginal microbial community. Less is known about the possible placental microbiome, although an association between the placenta’s bacterial makeup and preterm labor and other pregnancy complications is being investigated. The mammary/milk microbiome appears to be influenced by maternal characteristics and may play a role in inoculating the infant but may also be affected by the infant’s oral microbiome. Probiotic therapies such as “vaginal seeding” offer potential health benefits but require more rigorous testing. Exploring the reproductive microbiomes in detail and pairing this information with an individual’s detailed medical history will provide a more complete picture of the status and importance of the microbial network to health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(suppl 1): S38–S44.

    Article  PubMed  Google Scholar 

  2. Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol. 2009;47(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  3. Martín R, Langa S, Reviriego C, et al. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Tech. 2004;15(3):121–127.

    Article  CAS  Google Scholar 

  4. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon J, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fardini Y, Chung P, Dumm R, Joshi N, Han YW. Transmission of diverse oral bacterial to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun. 2010;78(4):1789–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  8. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484.

    Article  CAS  PubMed  Google Scholar 

  9. Vital M, Gao J, Rizzo M, Harrison T, Tiedje JM. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia. ISME J. 2015;9(4):832–843.

    Article  CAS  PubMed  Google Scholar 

  10. Isolauri E. Development of healthy gut microbiota early in life. J Paediatr Child Health. 2012;48(suppl 3):1–6.

    Article  PubMed  Google Scholar 

  11. Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339(6119):548–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352(6285):535–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–415.

    Article  PubMed  CAS  Google Scholar 

  14. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9(4):279–290.

    Article  CAS  PubMed  Google Scholar 

  16. Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5(3):411–418.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.

    Article  CAS  Google Scholar 

  18. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486(7402):215–221.

    Article  CAS  Google Scholar 

  19. Aagaard K, Petrosino J, Keitel W, et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013;27(3):1012–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma J, Coarfa C, Qin X, et al. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics. 2014;15:1–14.

    Google Scholar 

  21. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blekhman R, Goodrich JK, Huang K, et al. Host genetic variation impacts microbiome composition across human body sites. Genom Biol. 2015;16:191.

    Article  CAS  Google Scholar 

  24. León R, Silva N, Ovalle A, et al. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J Periodontol. 2007;78(7):1249–1255.

    Article  PubMed  Google Scholar 

  25. Boutin A, Demers S, Roberge S, Roy-Morency A, Chandad F, Bujold E. Treatment of periodontal disease and prevention of preterm birth: systematic review and meta-analysis. Am J Perionatol. 2013;30(7):537–544.

    Article  Google Scholar 

  26. Ide M, Papapanou PN. Epidemiology of the association between maternal periodontal disease and adverse pregnancy outcomes–systematic review. J Clin Periodontol. 2013;40(suppl 14): S181–S194.

    PubMed  Google Scholar 

  27. Döderlein A. Das Scheidensekret. Leipzig, E. Besold. 1892.

    Google Scholar 

  28. Fettweis JM, Serrano MG, Girerd PH, Jefferson KK, Buck GA. A new era of the vaginal microbiome: Advances using next-generation sequencing. Chem Biodivers. 2012;9(5):965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nasioudisis D, Linhares IM, Ledger WJ, Witkin SS. Bacterial vaginosis: a critical analysis of current knowledge. BJOG. 2017;124(1):61–69. doi:10.1111/1471-0528.14209.

    Article  Google Scholar 

  30. Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209(6):505–523.

    Article  PubMed  Google Scholar 

  31. Brotman RM. Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. J Clin Investigation. 2011;121(12):4610–4617.

    Article  CAS  Google Scholar 

  32. Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  33. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29(2):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(suppl 1):4680–4687.

    Article  CAS  PubMed  Google Scholar 

  35. Aagaard K, Riehle K, Ma J, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PloS One. 2012;7(6): e36466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romero R, Hassan SS, Gajer P, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Anahtar MN, Byrne EH, Doherty KE, et al. Cervicovaginal bacteria are a major modulator of host inflammatory response in the female genital tract. Immunity. 2015;42(5):965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lamont RF, Sobel JD, Akins RA, et al. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG. 2011;118(5):533–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma B, Forney LJ, Ravel J. The vaginal microbiome: rethinking health and diseases. Ann Rev Microbiol. 2012;66:371.

    Article  CAS  Google Scholar 

  41. Fettweis JM, Brooks JP, Serrano MG, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014;160(pt 10):2272–2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koren O, Knights D, Gonzalez A, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol. 2013;9(1): e1002863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Digiulio DG, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3(8): e3056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hernández-Rodríguez C, Romero-González R, Albani-Campanario M, Figueroa-Damián R, Meraz-Cruz N, Hernández-Guerrero C. Vaginal microbiota of healthy pregnant Mexican women is constituted by four Lactobacillus species and several vaginosis-associated bacteria. Infect Dis Obstet Gynecol. 2011;2011:851485.

    Article  PubMed  PubMed Central  Google Scholar 

  45. MacIntyre DA, Chandiramani M, Lee YS, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Science Rep. 2015;5:8988.

    Article  CAS  Google Scholar 

  46. Spear GT, French AL, Gilbert D, et al. Human a-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J Infect Dis. 2014;210(7):1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nunn KL, Forney LJ. Unraveling the dynamics of the human vaginal microbiome. Yale J Biol Med. 2016;89(3):331–337.

    PubMed  PubMed Central  Google Scholar 

  48. Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas. 2016;91:42–50.

    Article  PubMed  Google Scholar 

  49. Hummelen R, Macklaim JM, Bisanz JE, et al. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PloS One. 2011;6(11): e26602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walther-António MR, Jeraldo P, Miller MEB, et al. Pregnancy’s stronghold on the vaginal microbiome. PloS one. 2014;9(6): e98514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19–25.

    Article  PubMed  Google Scholar 

  52. Dominguez-Belo MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975.

    Article  Google Scholar 

  53. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511–521.

    Article  PubMed  Google Scholar 

  54. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Canadian Medical Association Journal 2013;185:385–394.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Madan JC, Hoen AG, Lundgren SN, et al. Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA pediatrics 2016;170:212–219.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016;8:343ra81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bäckhed F, Roswall J, Peng Y. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell host & microbe 2015;17:690–703.

    Article  CAS  Google Scholar 

  58. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science translational medicine 2016;8(343):343ra82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mueller NT, Shin H, Pizoni A, et al. Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Science Rep 2016;6:23133.

    Article  CAS  Google Scholar 

  60. Dominguez-Bello MG, De Jesus-Laboy KM, Shen, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cunnington AJ, Sim K, Deierl A, Kroll JS, Brannigan E, Darby J. “Vaginal seeding” of infants born by cesarean section. BMJ. 2016;352: i227.

    Google Scholar 

  62. New York University School of Medicine. Potential Restoration of the Infant Microbiome (PRIME). In: ClinicalTrials.gov. Bethesda, MD. National Library of Medicine; 2015. https://www.clinicaltrials.gov/ct2/show/NCT02407184. Accessed November 29, 2016.

    Google Scholar 

  63. American College of Obstetricians and Gynecologists. Practice advisory: Vaginal seeding. 2016. http://www.acog.org. Accessed November 29, 2016.

    Google Scholar 

  64. Brunham RC, Gottlieb SL, Paavonen J. Pelvic inflammatory disease. New Engl J Med. 2015;372(21):2039–2048.

    Article  PubMed  Google Scholar 

  65. Sharma H, Tal R, Clark NA, Segars JH. Microbiota and pelvic inflammatory disease. Semin Reprod Med. 2014;32(1):43–49.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weström L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. Pelvic inflammatory disease and fertility: a cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparaoscopic results. Sex Transm Dis. 1992;19(4):185–192.

    Article  PubMed  Google Scholar 

  67. Wassenaar TM, Panigrahi P. Is a foetus developing in a sterile environment? Lett Appl Microbiol. 2014;59(6):572–579.

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell CM, Haick A, Nkwopara E, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol. 2015;212(5):611.e1–611.e9.

    Article  Google Scholar 

  69. Ardissone AN, Diomel M, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3): e90784.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Erickson BK, Subramaniam A, Kumar R, Huh WK, Morrow C. Microbial diversity in the fimbriae, fallopian tube and peritoneum in women with benign disease and advanced pelvic malignancies. Gynecol Oncol. 2015;137(suppl 1):60.

    Article  Google Scholar 

  71. Miles SM, Kirkup BC. Investigation and characterization of the microbiome of the upper female reproductive tract. Obstet Gynecol. 2015;125(suppl 1):3s–4s.

    Article  Google Scholar 

  72. Brewster WR, Ko EM, Keku TO. An evaluation of the microbiota of the upper genital tract of women with benign changes and epithelial ovarian cancer. J Clin Oncol. 2016;(34 suppl). Abstract 5568.

    Google Scholar 

  73. Harris JW, Brown H. Bacterial content of the uterus at cesarean section. Am J Obstet Gynecol. 1927;13(2):133.

    Article  Google Scholar 

  74. Stout MJ, Conlon B, Landeau M, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am JObstet Gynecol. 2013;208(3):226.e1–e7.

    Article  Google Scholar 

  75. Hecht JL, Onderdonk A, Delaney M, et al; ELGAN Study Investigators. Characterization of chorioamnionitis in 2nd-trimester c-section placentas and correlation with microorganism recovery from subamniotic tissues. Pediatr Develop Pathol. 2008;11(1):15–22.

    Article  Google Scholar 

  76. Fichorova RN, Beatty N, Sassi RR, Yamamoto HS, Allred EN, Leviton A; ELGAN Investigators. Systemic inflammation in the extremely low gestational age newborn following maternal genitourinary infections. Am J Reprod Immunol. 2015;73(2):162–174.

    Article  CAS  PubMed  Google Scholar 

  77. Fichorova RN, Onderdonk AB, Yamamoto H, et al; Extremely Low Gestation Age Newborns (ELGAN) Study Investigators. Maternal microbe-specific modulation of Inflammatory response in extremely low-gestational-age newborns. MBio. 2011;2: e00280–e00210.

    PubMed  PubMed Central  Google Scholar 

  78. Doyle RM, Alber DG, Jones HE, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta. 2014;35(12):1099–1101.

    Article  CAS  PubMed  Google Scholar 

  79. Amarasekara R, Jayasekara RW, Senanayake H, Dissanayake VH. Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia. J Obstet Gynaecol Res. 2015;41(5):662–669.

    Article  CAS  PubMed  Google Scholar 

  80. Dong XD, Li XR, Luan JJ, et al. Bacterial communities in neonatal feces are similar to mothers’ placentae. Can J Infect Dis Med Microbiol. 2015;26(2):90–94.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients. 2015;7(8):6924–6937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Science Rep. 2016;6:23129.

    Article  CAS  Google Scholar 

  83. Prince AL, Ma J, Kannan PS, et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol. 2016;214(5):627.e1–16.

    Article  Google Scholar 

  84. Prince AL, Antony KM, Chu DM, Aagaard KM. The microbiome, parturition, and timing of birth: more questions than answers. J Reprod Immunol. 2014;104-105:12–19.

    Article  PubMed  Google Scholar 

  85. Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K. The preterm placental microbiome varies in association with excess maternal gestational weight gain. Am JObstet Gynecol. 2015;212(5):653.e1–e16.

    Article  Google Scholar 

  86. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast-and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478–482.

    Article  PubMed  Google Scholar 

  87. Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119(3): e724–e732.

    Article  PubMed  Google Scholar 

  88. Martín V, Maldonado-Barragán A, Moles L, et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact. 2012;28(1):36–44.

    Article  PubMed  Google Scholar 

  89. Schultz M, Gött C, Young RJ, Iwen P, Vanderhoof JA. Administration of oral probiotic bacteria to pregnant women causes temporary infantile colonization. J Pediatr Gastroenterol Nutr. 2004;38(3):293–297.

    Article  PubMed  Google Scholar 

  90. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am JClin Nutr. 2012;96(3):544–551.

    Article  CAS  Google Scholar 

  91. Collado MC, Laitinen K, Salminen S, Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  92. Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatr. 2004;113(2):361–367.

    Article  Google Scholar 

  93. Hassiotou F, Hepworth AR, Metzger P, Lai CT, Trengrove N, Hartmann PE, Filgueira L. 2013. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin Transl Immun. 2013;2(4): e3.

    Article  CAS  Google Scholar 

  94. Hassiotou F, Geddes DT. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding. Adv Nutr. 2015;6(3):267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goldman AS. The immune system in human milk and the developing infant. Breastfeed Med. 2007;2(4):195–204.

    Article  PubMed  Google Scholar 

  96. Smith CW, Goldman AS. The cells of human colostrum. I. In vitro studies of morphology and functions. Pediatr Res. 1968;2(2):103–109.

    Article  CAS  PubMed  Google Scholar 

  97. Klostermann K, Crispie F, Flynn J, Ross RP, Hill C, Meaney W. Intramammary infusion of a live culture of Lactobacillus lactis for treatment of bovine mastitis; comparison with antibiotic in field trials. J Dairy Res. 2008;75(3):365–373.

    Article  CAS  PubMed  Google Scholar 

  98. Soleimani NA, Kermanshahi RK, Yakhchali B, Sattari TN. Antagonistic activity of probiotic lactobacilli against Staphylococcus aureus isolated from bovine mastitis. Afr J Microbiol Res. 2010;4(20):2169–2173.

    Google Scholar 

  99. Espeche MC, Pellegrino M, Frola I, Larriestra A, Bogni C, Nader-Macías MF. Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis. Anaerobe. 2012;18(1):103–109.

    Article  CAS  PubMed  Google Scholar 

  100. Bouchard DS, Seridan B, Saraoui T, et al. Lactic acid bacteria isolated from bovine mammary microbiota: potential allies against bovine mastitis. PloS One. 2015;10(12): e0144831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Greene WA, Gano AM, Smith KL, Hogan JS, Todhunter DA. Comparison of probiotic and antibiotic intramammary therapy of cattle with elevated somatic cell counts. J Dairy Sci. 1991;74(9):2976–2981.

    Article  CAS  PubMed  Google Scholar 

  102. Arroyo R, Martin V, Maldonado A, Jimenez E, Fernandez L, Rodriguez JM. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin Infect Dis. 2010;50(12):1551–1558.

    Article  CAS  PubMed  Google Scholar 

  103. Fernandez L, Cardenas N, Arroyo R, et al. Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin Infect Dis. 2016;62(5):568–573.

    Article  CAS  PubMed  Google Scholar 

  104. Amir LH, Griffin L, Cullinane M, Garland SM. Probiotics and mastitis: evidence-based marketing? Int Breastfeed J. 2016;11:19.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bashan A, Gibson TE, Friedman J, et al. Universality of human microbial dynamics. Nature. 2016;534(7606):259–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Power PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Power, M.L., Quaglieri, C. & Schulkin, J. Reproductive Microbiomes: A New Thread in the Microbial Network. Reprod. Sci. 24, 1482–1492 (2017). https://doi.org/10.1177/1933719117698577

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117698577

Keywords

Navigation