Skip to main content

Advertisement

Log in

Objective Analysis of Vaginal Ultrasound Video Clips for Exploring Uterine Peristalsis Post Vaginal and Cesarean Section Deliveries

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The nonpregnant uterus is characterized by cyclic contractions that assist in sperm transport to the fallopian tube, embryo transport to implantation site, and expulsion of menstrual debris. The effect of post-Cesarean section (CS) scar on uterine peristalsis is unclear, while worldwide the prevalence of CS deliveries is increasing. In this study, we developed a new objective method for analysis of dynamic characteristics of the nonpregnant uterus from transvaginal ultrasound (TVUS) recordings when the uterine cavity is not clearly observed, as may be the case in post-CS uteri. The method of active contours was utilized to detect the contours of the endometrium–myometrium interface (EMI) from sagittal cross-section TVUS images of nonpregnant uteri. The contours were straightened along the uterus centerline and registered with respect to the fundal end in order to reduce the noise due to movements of the physician and the participant. A dynamic analysis was conducted on these timedependent contours in order to explore the frequency and amplitude of the EMI motility. The analysis was conducted on TVUS video clips from 12 nonpregnant participants, 7 post-CS and 5 controls. The frequencies of the EMI motility was 0.010 to 0.064 Hz at days 8 to 17 in the control participants and 0.014 to 0.073 Hz at days 9 to 15 in post-CS participants. The maximal amplitude of motility was 0.67 to 2.00 mm and 0.48 to 2.58 mm for the control and post-CS participants, respectively. In this preliminary study, we have not observed significant difference between the EMI motility of healthy and post-CS uteri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wray S, Burdyga T, Noble D, Noble K, Borysova L, Arrowsmith S. Progress in understanding electro-mechanical signalling in the myometrium. Acta Physiol. 2015;213(2):417–431.

    Article  CAS  Google Scholar 

  2. Young RC. Mechanotransduction mechanisms for coordinating uterine contractions in human labor. Reproduction. 2016; 152(2):R51–R61.

    Article  CAS  PubMed  Google Scholar 

  3. Eytan O, Jaffa AJ, Har-Toov J, Dalach E, Elad D. Dynamics of the intrauterine fluid–wall interface. Ann Biomed Eng. 1999;27(3): 372–379.

    Article  CAS  PubMed  Google Scholar 

  4. Fusi L, Cloke B, Brosens JJ. The uterine junctional zone. Best Pract Res Clin Obstet Gynaecol. 2006;20(4):479–491.

    Article  PubMed  Google Scholar 

  5. Abbas K, Monaghan SD, Campbell I. Uterine physiology. Anaesth Intensive Care Med. 2011;12(3):108–110.

    Article  Google Scholar 

  6. Bulletti C, de Ziegler D, Polli V, Diotallevi L, Ferro ED, Flamigni C. Uterine contractility during the menstrual cycle. Hum Reprod. 2000;15(suppl 1):81–89.

    Article  PubMed  Google Scholar 

  7. Kunz G, Leyendecker G. Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction. Reprod Biomed Online. 2002;4(suppl 3):5–9.

    Article  PubMed  Google Scholar 

  8. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum Reprod. 1996;11(3): 627–632.

    Article  CAS  PubMed  Google Scholar 

  9. Wildt L, Kissler S, Licht P, Becker W. Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by hysterosalpingoscintigraphy, hysterotonography, electrohysterography and Doppler sonography. Hum Reprod Update. 1998;4(5):655–666.

    Article  CAS  PubMed  Google Scholar 

  10. Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280(4):529–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leyendecker G, Bilgicyildirim A, Inacker M, et al. Adenomyosis and endometriosis. Re-visiting their association and further insights into the mechanisms of auto-traumatisation. An MRI study. Arch Gynecol Obstet. 2015;291(4):917–932.

    Article  CAS  PubMed  Google Scholar 

  12. Meirzon D, Jaffa AJ, Gordon Z, Elad D. A new method for analysis of non-pregnant uterine peristalsis using transvaginal ultrasound. Ultrasound Obstet Gynecol. 2011;38(2):217–224.

    Article  CAS  PubMed  Google Scholar 

  13. Fanchin R. Uterine contractility decreases at the time of blastocyst transfers. Hum Reprod. 2001;16(6):1115–1119.

    Article  CAS  PubMed  Google Scholar 

  14. Fanchin R, Righini C, Olivennes F, Taylor S, de Ziegler D, Frydman R. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod. 1998; 13(7):1968–1974.

    Article  CAS  PubMed  Google Scholar 

  15. Kido A, Nishiura M, Togashi K, et al. A semiautomated technique for evaluation of uterine peristalsis. J Magn Reson Imaging. 2005; 21(3):249–257.

    Article  PubMed  Google Scholar 

  16. Watanabe K, Kataoka M, Yano K, et al. Automated detection and measurement of uterine peristalsis in cine MR images: automated detection of uterine peristalsis. J Magn Reson Imaging. 2015; 42(3):644–650.

    Article  PubMed  Google Scholar 

  17. Gibbons L, Belizán JM, Lauer JA, Betrán AP, Merialdi M, Althabe F. The global numbers and costs of additionally needed and unnecessary caesarean sections performed per year: overuse as a barrier to universal coverage. World Health Organization Report. Geneva, Switzerland: World Health Organization; 2010.

    Google Scholar 

  18. O’Neill SM, Khashan AS, Henriksen TB, et al. Does a Caesarean section increase the time to a second live birth? A register-based cohort study. Hum Reprod. 2014;29(11):2560–2568.

    Article  PubMed  Google Scholar 

  19. Molina G, Weiser TG, Lipsitz SR, et al. Relationship between Cesarean delivery rate and maternal and neonatal mortality. JAMA. 2015;314(21):2263.

    Article  CAS  PubMed  Google Scholar 

  20. Gurol-Urganci I, Bou-Antoun S, Lim CP, et al. Impact of Caesarean section on subsequent fertility: a systematic review and metaanalysis. Hum Reprod. 2013;28(7):1943–1952.

    Article  CAS  PubMed  Google Scholar 

  21. Gurol-Urganci I, Cromwell DA, Mahmood TA, van der Meulen JH, Templeton A. A population-based cohort study of the effect of Caesarean section on subsequent fertility. Hum Reprod. 2014; 29(6):1320–1326.

    Article  CAS  PubMed  Google Scholar 

  22. O’Neill SM, Khashan AS, Kenny LC, et al. Time to subsequent live birth according to mode of delivery in the first birth. BJOG. 2015;122(9):1207–1215.

    Article  PubMed  Google Scholar 

  23. Eijsink JJ, van der Leeuw-Harmsen L, van der Linden PJ. Pregnancy after Caesarean section: fewer or later? Hum Reprod. 2008; 23(3):543–547.

    Article  CAS  PubMed  Google Scholar 

  24. Evers EC, McDermott KC, Blomquist JL, Handa VL. Mode of delivery and subsequent fertility. Hum Reprod. 2014;29(11): 2569–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naji O, Wynants L, Smith A, et al. Does the presence of a Caesarean section scar affect implantation site and early pregnancy outcome in women attending an early pregnancy assessment unit? Hum Reprod. 2013;28(6):1489–1496.

    Article  CAS  PubMed  Google Scholar 

  26. Scott JR, Porter FT. Danforth’s Obstetrics and Gynecology. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  27. GerigG,Kubler O, Kikinis R, Jolesz FA. Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging. 1992;11(2):221–232.

    Article  Google Scholar 

  28. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990; 12(3):629–639.

    Article  Google Scholar 

  29. Li B, Acton ST. Automatic active model initialization via Poisson inverse gradient. IEEE Trans Image Process. 2008;17(8): 1406–1420.

    Article  PubMed  Google Scholar 

  30. Li B, Acton ST. Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process. 2007;16(8):2096–2106.

    Article  PubMed  Google Scholar 

  31. Myers KM, Elad D. Biomechanics of the human uterus. WIREs Syst Biol Med. 2017:e1388. doi: 10.1002/wsbm.1388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Elad DSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gora, S., Elad, D. & Jaffa, A.J. Objective Analysis of Vaginal Ultrasound Video Clips for Exploring Uterine Peristalsis Post Vaginal and Cesarean Section Deliveries. Reprod. Sci. 25, 899–908 (2018). https://doi.org/10.1177/1933719117697256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117697256

Keywords

Navigation