Skip to main content

Advertisement

Log in

A Role for the Inflammasome in Spontaneous Preterm Labor With Acute Histologic Chorioamnionitis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Inflammasomes are cytosolic multiprotein complexes that orchestrate inflammation in response to pathogens and endogenous danger signals. Herein, we determined whether the chorioamniotic membranes from women in spontaneous preterm labor with acute histologic chorioamnionitis (1) express major inflammasome components; (2) express caspase (CASP)-l and CASP-4 as well as their active forms; (3) exhibit apoptosis-associated speck-like protein containing a CARD (ASC)/CASP-1 complex formation; and (4) release the mature forms of interleukin (IL)-1β and IL-18. We utilized quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, immunoblotting, and immunohistochemistry to determine the messenger RNA (mRNA) and protein expression of major inflammasome components, nucleotide-binding oligomerization domain (NOD) proteins, and the pro- and mature/active forms of CASP-1, CASP-4, IL-1β and IL-18. The ASC/CASP-1 complex formation was determined using an in situ proximity ligation assay. When comparing the chorioamniotic membranes from women in spontaneous preterm labor with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the mRNA of NLR family pyrin domain-containing protein (NLRP)I, NLRP3, NLR family CARD domain-containing protein 4 (NLRC4), and NOD2 were higher; (2) the NLRP3 protein was increased; (3) the mRNA and active form (p10) of CASP-1 were greater; (4) the mRNA and active form of CASP-4 were increased; (5) the mRNA and mature form of IL-β (3 were higher; (6) the mature form of IL-18 was elevated; and (7) ASC/CASP-1 complex formation was increased. In conclusion, spontaneous preterm labor with acute histologic chorioamnionitis is characterized by an upregulation of NLRP3 and the active form of CASP-4, as well as increased ASC/CASP-1 complex formation, which may participate in the activation of CASP-1 and the maturation of IL-1β and IL-18 in the chorioamniotic membranes. These findings provide the first evidence that supports a role for the inflammasome in the pathological inflammation implicated in spontaneous preterm labor with acute histologic chorioamnionitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann N Y Acad Sci. 1994;734: 414–429.

    CAS  PubMed  Google Scholar 

  2. Romero R. Prenatal medicine: the child is the father of the man. 1996. Prenatal Neonatal Med. 1996;1:8–11.

    Google Scholar 

  3. Romero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG. 2006;113(suppl 3): 17–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gotsch F, Romero R, Erez O, et al. The preterm parturition syndrome and its implications for understanding the biology, risk assessment, diagnosis, treatment and prevention of preterm birth. J Matern Fetal Neonatal Med. 2009;22(suppl 2): 5–23.

    PubMed  Google Scholar 

  5. Romero R, Lockwood CJ. Pathogenesis of spontaneous preterm labor. In: Creasy RK, Resnik R, lams J, eds. Creasy and Resnik’s Maternal-Fetal Medicine: Principles and Practice. 6th ed. Philadelphia, PA: Elsevier; 2009:521–543.

    Google Scholar 

  6. Romero R. Prenatal medicine: the child is the father of the man. 1996. J Matern Fetal Neonatal Med. 2009;22(8):636–639.

    PubMed  Google Scholar 

  7. Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–535.

    CAS  PubMed  Google Scholar 

  8. Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–2172.

    PubMed  Google Scholar 

  9. Hamilton BE, Hoyert DL, Martin JA, Strobino DM, Guyer B. Annual summary of vital statistics: 2010-2011. Pediatrics. 2013;131(3):548–558.

    PubMed  PubMed Central  Google Scholar 

  10. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430–440.

    PubMed  Google Scholar 

  11. Berkowitz GS, Blackmore-Prince C, Lapinski RH, Savitz DA. Risk factors for preterm birth subtypes. Epidemiology. 1998;9(3):279–285.

    CAS  PubMed  Google Scholar 

  12. Moutquin JM. Classification and heterogeneity of preterm birth. BJOG. 2003;110(suppl 20):30–33.

    PubMed  Google Scholar 

  13. Goldenberg RL, Culhane JF, lams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    PubMed  PubMed Central  Google Scholar 

  14. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bobitt JR, Ledger WJ. Unrecognized amnionitis and prematurity: a preliminary report. J Reprod Med. 1977;19(1):8–12.

    CAS  PubMed  Google Scholar 

  16. Bobitt JR, Ledger WJ. Amniotic fluid analysis. Its role in maternal neonatal infection. Obstet Gynecol. 1978;51(1):56–62.

    CAS  PubMed  Google Scholar 

  17. Miller JM Jr, Pupkin MJ, Hill GB. Bacterial colonization of amniotic fluid from intact fetal membranes. Am J Obstet Gynecol. 1980;136(6):796–804.

    PubMed  Google Scholar 

  18. Bobitt JR, Hayslip CC, Damato JD. Amniotic fluid infection as determined by transabdominal amniocentesis in patients with intact membranes in premature labor. Am J Obstet Gynecol. 1981;140(8):947–952.

    CAS  PubMed  Google Scholar 

  19. Wallace RL, Herrick CN. Amniocentesis in the evaluation of premature labor. Obstet Gynecol. 1981;57(4):483–486.

    CAS  PubMed  Google Scholar 

  20. Wahbeh CJ, Hill GB, Eden RD, Gall SA. Intra-amniotic bacterial colonization in premature labor. Am J Obstet Gynecol. 1984;148(6):739–743.

    CAS  PubMed  Google Scholar 

  21. Romero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988;12(4):262–279.

    CAS  PubMed  Google Scholar 

  22. Romero R, Mazor M. Infection and preterm labor. Clin Obstet Gynecol. 1988;31(3):553–584.

    CAS  PubMed  Google Scholar 

  23. Romero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989;161(2675611):817–824.

    CAS  PubMed  Google Scholar 

  24. Romero R, Avila C, Brekus CA, Morotti R. The role of systemic and intrauterine infection in preterm parturition. Ann N Y Acad Sci. 1991;622:355–375.

    CAS  PubMed  Google Scholar 

  25. Watts DH, Krohn MA, Hillier SL, Eschenbach DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol. 1992;79(3):351–357.

    CAS  PubMed  Google Scholar 

  26. Gibbs RS, Romero R, Hillier SL, Eschenbach DA, Sweet RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol. 1992;166(5):1515–1528.

    CAS  PubMed  Google Scholar 

  27. Gomez R, Romero R, Edwin SS, David C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am. 1997;11(1):135–176.

    CAS  PubMed  Google Scholar 

  28. Romero R, Gomez R, Chaiworapongsa T, Conoscenti G, Kim JC, Kim YM. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol. 2001;15(suppl 2):41–56.

    PubMed  Google Scholar 

  29. Yoon BH, Romero R, Moon JB, et al. The frequency and clinical significance of intra-amniotic inflammation in patients with a positive cervical fetal fibronectin. Am J Obstet Gynecol. 2001;185(5):1137–1142.

    CAS  PubMed  Google Scholar 

  30. Yoon BH, Romero R, Moon JB, et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001;185(5):1130–1136.

    CAS  PubMed  Google Scholar 

  31. Romero R, Espinoza J, Chaiworapongsa T, Kalache K. Infection and prematurity and the role of preventive strategies. Semin Neonatal. 2002;7(4):259–274.

    Google Scholar 

  32. Shim SS, Romero R, Hong JS, et al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 2004;191(4):1339–1345.

    PubMed  Google Scholar 

  33. Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical com-plications, and fetal injury. Nutr Rev. 2007;65(12 pt 2): S194–S202.

    PubMed  Google Scholar 

  34. Lee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007;197(3):294.e291–e296.

    Google Scholar 

  35. Lee SE, Romero R, Park CW, Jun JK, Yoon BH. The frequency and significance of intraamniotic inflammation in patients with cervical insufficiency. Am J Obstet Gynecol. 2008;198(6):633.e631–e638.

    Google Scholar 

  36. Lee SE, Romero R, Lee SM, Yoon BH. Amniotic fluid volume in intra-amniotic inflammation with and without culture-proven amniotic fluid infection in preterm premature rupture of mem-branes. J Perinat Med. 2010;38(1):39–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Madan I, Romero R, Kusanovic JP, et al. The frequency and clinical significance of intra-amniotic infection and/or inflammation in women with placenta previa and vaginal bleeding: an unexpected observation. J Perinat Med. 2010;38(3):275–279.

    PubMed  PubMed Central  Google Scholar 

  38. Kim SM, Romero R, Lee J, et al. The frequency and clinical significance of intra-amniotic inflammation in women with preterm uterine contractility but without cervical change: do the diagnostic criteria for preterm labor need to be changed? JMatern Fetal Neonatal Med. 2012;25(8):1212–1221.

    Google Scholar 

  39. Blanc WA. Amniotic infection syndrome; pathogenesis, morphol-ogy, and significance in circumnatal mortality. Clin Obstet Gynecol. 1959;2:705-734.

    CAS  PubMed  Google Scholar 

  40. Russell P. Inflammatory lesions of the human placenta: clinical significance of acute chorioamnionitis. Am J Diagn Gynecol Obstet. 1979;2:127–137.

    Google Scholar 

  41. Blanc WA. Pathology of the placenta and cord in ascending and in haematogenous infection. Ciba Found Symp. 1979(77): 17–38.

    Google Scholar 

  42. Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschen-bach DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988;319(15):972–978.

    CAS  PubMed  Google Scholar 

  43. Hillier SL, Krohn MA, Kiviat NB, Watts DH, Eschenbach DA. Microbiologic causes and neonatal outcomes associated with chorioamnion infection. Am J Obstet Gynecol. 1991;165(4 pt 1):955–961.

    CAS  PubMed  Google Scholar 

  44. Romero R, Salafia CM, Athanassiadis AP, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992;166(5):1382–1388.

    CAS  PubMed  Google Scholar 

  45. Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C; Society for Pediatric Pathology, Perinatal Section, Amniotic Fluid Infection Nosology Committee. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6(5):435–448.

    PubMed  Google Scholar 

  46. Redline RW. Placental inflammation. Semin Neonatol. 2004;9(4):265–274.

    PubMed  Google Scholar 

  47. Fox H, Sebire NJ. Infections and inflammatory lesions of the placenta. Pathology of the placenta. 3rd ed. Edinburgh, Scotland: Elsevier Saunders; 2007:303–354.

    Google Scholar 

  48. Benirschke K, Burton G, Baergen R. Infectious diseases. Pathology of the Human Placenta: Springer Berlin Heidelberg; 2012: 557–655.

    Google Scholar 

  49. Guzick DS, Winn K. The association of chorioamnionitis with preterm delivery. Obstet Gynecol. 1985;65(1):11–16.

    CAS  PubMed  Google Scholar 

  50. van Hoeven KH, Anyaegbunam A, Hochster H, et al. Clinical significance of increasing histologic severity of acute inflammation in the fetal membranes and umbilical cord. Pediatr Pathol Lab Med. 1996;16(5):731–744.

    PubMed  Google Scholar 

  51. Srinivas SK, Ma Y, Sammel MD, et al. Placental inflammation and viral infection are implicated in second trimester pregnancy loss. Am J Obstet Gynecol. 2006;195(3):797–802.

    CAS  PubMed  Google Scholar 

  52. Srinivas SK, Ernst LM, Edlow AG, Elovitz MA. Can placental pathology explain second-trimester pregnancy loss and subsequent pregnancy outcomes? Am J Obstet Gynecol. 2008;199(4): 402.e401-405.

    Google Scholar 

  53. Taguchi A, Yamashita A, Kawana K, et al. Recent progress in therapeutics for inflammation-associated preterm birth: a review [published online December 1, 2015]. Reprod Sci. pii: 1933719115618282.

    Google Scholar 

  54. Romero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014;71(4):330–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Romero R, Miranda J, Chaiworapongsa T, et al. Sterile intraamniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance [published online September 24, 2014]. J Matern Fetal Neonatal Med: 1–17.

    Google Scholar 

  57. Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394–1409.

    PubMed  Google Scholar 

  58. Romero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015;43(1):19–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Romero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med. 2016;44(1):5–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Romero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intra-amniotic infection? J Perinat Med. 2016;44(1):23–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term IV: the maternal plasma cytokine profile. J Perinat Med. 2016;44(1):77–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term V: umbilical cord plasma cytokine profile in the context of a systemic maternal inflammatory response. J Perinat Med. 2016;44(1):53–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term VI: acute chorioamnionitis and funisitis according to the presence or absence of microorganisms and inflammation in the amniotic cavity. J Perinat Med. 2016;44(1):33–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28(10):429–436.

    CAS  PubMed  Google Scholar 

  65. Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007;220:60-81.

    CAS  PubMed  Google Scholar 

  66. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17(4):359–365.

    CAS  PubMed  Google Scholar 

  67. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213(suppl 4): S29–S52.

    PubMed  PubMed Central  Google Scholar 

  69. Redline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015;213(4 Suppl):S21–8.

    PubMed  Google Scholar 

  70. Kim CJ, Romero R, Kusanovic JP, et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol. 2010;23(7):1000–1011.

    PubMed  PubMed Central  Google Scholar 

  71. Toti P, Arcuri F, Tang Z, et al. Focal increases of fetal macrophages in placentas from pregnancies with histological chorioamnionitis: potential role of fibroblast monocyte chemotactic protein-1. Am J Reprod Immunol. 2011;65(5):470–479.

    CAS  PubMed  Google Scholar 

  72. Redline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med. 2012;17(1):20–25.

    PubMed  Google Scholar 

  73. Cherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptide-l/interleukin-8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993;169(5):1299–1303.

    CAS  PubMed  Google Scholar 

  74. Kacerovsky M, Drahosova M, Hornychova H, et al. Value of amniotic fluid interleukin-8 for the prediction of histological chorioamnionitis in preterm premature rupture of membranes. Neuro Endocrinol Lett. 2009;30(6):733–738.

    CAS  PubMed  Google Scholar 

  75. Mittal P, Romero R, Kusanovic JP, et al. CXCL6 (granulocyte chemotactic protein-2): a novel chemokine involved in the innate immune response of the amniotic cavity. Am J Reprod Immunol. 2008;60(3):246–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Esplin MS, Romero R, Chaiworapongsa T, et al. Monocyte chemotactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. J Matern Fetal Neonatal Med. 2005;17(6):365–373.

    CAS  PubMed  Google Scholar 

  77. Romero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990;85(5):1392–1400.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Romero R, Mazor M, Brandt F, et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992;27(3–4):117–123.

    CAS  PubMed  Google Scholar 

  79. Romero R, Yoon BH, Kenney JS, Gomez R, Allison AC, Sehgal PB. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993;30(2–3):167–183.

    CAS  PubMed  Google Scholar 

  80. Hillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993;81(6):941–948.

    CAS  PubMed  Google Scholar 

  81. Arntzen KJ, Kjollesdal AM, Halgunset J, Vatten L, Austgulen R. TNF, IL-1, IL-6, IL-8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. J Perinat Med. 1998;26(1):17–26.

    CAS  PubMed  Google Scholar 

  82. Yoon BH, Jun JK, Romero R, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177(1):19–26.

    CAS  PubMed  Google Scholar 

  83. Yoon BH, Romero R, Jun JK, et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of broncho-pulmonary dysplasia. Am J Obstet Gynecol. 1997; 177(4): 825–830.

    CAS  PubMed  Google Scholar 

  84. Figueroa R, Garry D, Elimian A, Patel K, Sehgal PB, Tejani N. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2005;18(4):241–247.

    CAS  PubMed  Google Scholar 

  85. Hoist RM, Laurini R, Jacobsson B, et al. Expression of cytokines and chemokines in cervical and amniotic fluid: relationship to histological chorioamnionitis. J Matern Fetal Neonatal Med. 2007;20(12):885–893.

    Google Scholar 

  86. Kacerovsky M, Celec P, Vlkova B, et al. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PIoS One. 2013;8(3):e60399.

    Google Scholar 

  87. Bhat G, Williams SM, Saade GR, Menon R. Biomarker interac-tions are better predictors of spontaneous preterm birth. Reprod Sci. 2014;21(3):340–350.

    CAS  PubMed  Google Scholar 

  88. Romero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015;213(6):836.e831–836.e818.

    Google Scholar 

  89. Saito M, Payne MS, Miura Y, et al. Polymyxin B agonist capture therapy for intrauterine inflammation: proof-of-principle in a fetal ovine model. Reprod Sci. 2014;21(5):623–631.

    PubMed  Google Scholar 

  90. Lockwood CJ, Arcuri F, Toti P, et al. Tumor necrosis factor-alpha and interleukin-1 beta regulate interleukin-8 expression in third trimester decidual cells: implications for the genesis of chorioam-nionitis. Am J Pathol. 2006;169(4):1294–1302.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lockwood CJ, Murk WK, Kayisli UA, et al. Regulation of interleukin-6 expression in human decidual cells and its potential role in chorioamnionitis. Am J Pathol. 2010;177(4):1755–1764.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yoon BH, Romero R, Yang SH, et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996;174(5):1433–1440.

    CAS  PubMed  Google Scholar 

  93. Dollner H, Vatten L, Halgunset J, Rahimipoor S, Austgulen R. Histologic chorioamnionitis and umbilical serum levels of pro-inflammatory cytokines and cytokine inhibitors. BJOG. 2002;109(5):534–539.

    PubMed  Google Scholar 

  94. Andrys C, Drahosova M, Hornychova H, et al. Umbilical cord blood concentrations of IL-6, IL-8, and MMP-8 in pregnancy complicated by preterm premature rupture of the membranes and histological chorioamnionitis. Neuro Endocrinol lett. 2010;31(6):857–863.

    CAS  PubMed  Google Scholar 

  95. Saito S, Kasahara T, Kato Y, Ishihara Y, Ichijo M. Elevation of amniotic fluid interleukin 6 (IL-6), IL-8 and granulocyte colony stimulating factor (G-CSF) in term and preterm parturition. Cytokine. 1993;5(1):81–88.

    CAS  PubMed  Google Scholar 

  96. Yoon BH, Romero R, Park JS, et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000; 182(3): 675–681.

    CAS  PubMed  Google Scholar 

  97. Hitti J, Tarczy-Hornoch P, Murphy J, Hillier SL, Aura J, Eschen-bach DA. Amniotic fluid infection, cytokines, and adverse outcome among infants at 34 weeks’ gestation or less. Obstet Gynecol. 2001;98(6):1080–1088.

    CAS  PubMed  Google Scholar 

  98. Moon JB, Kim JC, Yoon BH, et al. Amniotic fluid matrix metalloproteinase-8 and the development of cerebral palsy. J Perinat Med. 2002;30(4):301–306.

    PubMed  Google Scholar 

  99. Combs CA, Gravett M, Garite TJ, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e121–125.e115.

    Google Scholar 

  100. Kunze M, Klar M, Morfeld CA, et al. Cytokines in noninva-sively obtained amniotic fluid as predictors of fetal inflammatory response syndrome. Am J Obstet Gynecol. 2016;215(1):96.e1–96.e8.

    CAS  Google Scholar 

  101. Weeks JW, Reynolds L, Taylor D, Lewis J, Wan T, Gall SA. Umbilical cord blood interleukin-6 levels and neonatal morbidity. Obstet Gynecol. 1997;90(5):815–818.

    CAS  PubMed  Google Scholar 

  102. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179(1):194–202.

    CAS  PubMed  Google Scholar 

  103. Berner R, Niemeyer CM, Leititis JU, et al. Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-alpha, interleukin (IL)-lbeta, IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr Res. 1998;44(4):469–477.

    CAS  PubMed  Google Scholar 

  104. Dollner H, Vatten L, Linnebo I, Zanussi GF, Laerdal A, Austgulen R. Inflammatory mediators in umbilical plasma from neonates who develop early-onset sepsis. Biol Neonate. 2001;80(1):41–47.

    CAS  PubMed  Google Scholar 

  105. Goepfert AR, Andrews WW, Carlo W, et al. Umbilical cord plasma interleukin-6 concentrations in preterm infants and risk of neonatal morbidity. Am J Obstet Gynecol. 2004;191(4):1375–1381.

    CAS  PubMed  Google Scholar 

  106. An H, Nishimaki S, Ohyama M, et al. Interleukin-6, interleukin-8, and soluble tumor necrosis factor receptor-I in the cord blood as predictors of chronic lung disease in premature infants. Am J Obstet Gynecol. 2004;191(5):1649–1654.

    CAS  PubMed  Google Scholar 

  107. Elsmen E, Ley D, Cilio CM, Hansen-Pupp I, Hellstrom-Westas L. Umbilical cord levels of interleukin-1 receptor antagonist and neonatal outcome. Biol Neonate. 2006;89(4):220–226.

    CAS  PubMed  Google Scholar 

  108. Satar M, Turhan E, Yapicioglu H, Narli N, Ozgunen FT, Cetiner S. Cord blood cytokine levels in neonates born to mothers with prolonged premature rupture of membranes and its relationship with morbidity and mortality. Eur Cytokine Netw. 2008;19(1):37–41.

    CAS  PubMed  Google Scholar 

  109. Liu J, Feng ZC. Increased umbilical cord plasma interleukin-1 beta levels was correlated with adverse outcomes of neonatal hypoxic-ischemic encephalopathy. J Trop Pediatr. 2010;56(3):178–182.

    PubMed  Google Scholar 

  110. Armstrong-Wells J, Donnelly M, Post MD, Manco-Johnson MJ, Winn VD, Sebire G. Inflammatory predictors of neurologic dis-ability after preterm premature rupture of membranes. Am J Obstet Gynecol. 2015;212(2):212.e211-212.e219.

    Google Scholar 

  111. Cordeiro CN, Savva Y, Vaidya D, et al. Mathematical modeling of the biomarker milieu to characterize preterm birth and predict adverse neonatal outcomes. Am JReprod Immunol. 2016;75(5):594–601.

    CAS  Google Scholar 

  112. Pineles BL, Romero R, Montenegro D, et al. “The inflamma-some” in human parturition. Reprod Sci. 2007;14(1):59A.

    Google Scholar 

  113. Gotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflam-masome and parturition. J Matern Fetal Neonatal Med. 2008;21(9):605–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Romero R, Xu Y, Plazyo O, et al. A role for the inflammasome in spontaneous labor at term [published online March 8, 2016]. Am J Reprod Immunol. doi:10.1111/aji. 12440.

    Google Scholar 

  115. Gomez-Lopez N, Romero R, Xu Y, et al. A role for the inflam-masome in spontaneous labor at term with acute histologic chor-ioamnionitis [published online November 16, 2016]. pii: 1933719116675058.

    Google Scholar 

  116. Martinon F, Burns K, Tschopp J. The inflammasome: a mole-cular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–426.

    CAS  PubMed  Google Scholar 

  117. Petrilli V, Papin S, Tschopp J. The inflammasome. Curr Biol. 2005;15(15):R581.

    Google Scholar 

  118. Ogura Y, Sutterwala FS, Flavell RA. The inflammasome: first line of the immune response to cell stress. Cell. 2006;126(4):659–662.

    CAS  PubMed  Google Scholar 

  119. Sutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. J leukoc Biol. 2007;82(2):259–264.

    CAS  PubMed  Google Scholar 

  120. Mariathasan S, Monack DM. Inflammasome adaptors and sen-sors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7(1):31–40.

    CAS  PubMed  Google Scholar 

  121. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119(12):3502–3511.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jha S, Ting JP. Inflammasome-associated nucleotide-binding domain, leucine-rich repeat proteins and inflammatory diseases. J Immunol. 2009;183(12):7623–7629.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009;21(1):10–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev. 2009;227(1):95–105.

    CAS  PubMed  Google Scholar 

  126. Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010;22(1):28–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832.

    CAS  PubMed  Google Scholar 

  128. Franchi L, Munoz-Planillo R, Reimer T, Eigenbrod T, Nunez G. Inflammasomes as microbial sensors. Eur J Immunol. 2010;40(3):611–615.

    CAS  PubMed  Google Scholar 

  129. Bauernfeind F, Ablasser A, Bartok E, et al. Inflammasomes: current understanding and open questions. Cell Mol life Sci. 2011;68(5):765–783.

    CAS  PubMed  Google Scholar 

  130. Kersse K, Bertrand MJ, Lamkanfi M, Vandenabeele P. NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev. 2011;22(5–6):257–276.

    CAS  PubMed  Google Scholar 

  131. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011;243(1):136–151.

    CAS  PubMed  Google Scholar 

  132. Lamkanfi M. Emerging inflammasome effector mechanisms. Nat Rev Immunol. 2011;11(3):213–220.

    CAS  PubMed  Google Scholar 

  133. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187(2):597–602.

    CAS  PubMed  Google Scholar 

  134. Broz P, Monack DM. Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev. 2011;243(1):174–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol. 2011;2:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Horvath GL, Schrum JE, De Nardo CM, Latz E. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011;243(1):119–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and IL-lbeta and IL-18 processing during infection. Trends Immunol. 2011;32(3):110–116.

    PubMed  Google Scholar 

  138. Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):5–12.

    CAS  PubMed  Google Scholar 

  140. Ciraci C, Janczy JR, Sutterwala FS, Cassel SL. Control of innate and adaptive immunity by the inflammasome. Microbes Infect. 2012;14(14):1263–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflam-masome signaling. Nat Immunol. 2012;13(4):333–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Franchi L, Nunez G. Immunology. Orchestrating inflammasomes. Science. 2012;337(6100):1299–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Henao-Mejia J, Elinav E, Strowig T, Flavell RA. Inflammasomes: far beyond inflammation. Nat Immunol. 2012;13(4):321–324.

    CAS  PubMed  Google Scholar 

  144. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411.

    CAS  PubMed  Google Scholar 

  145. Bauernfeind F, Hornung V. Of inflammasomes and pathogenssensing of microbes by the inflammasome. EMBO Mol Med. 2013;5(6):814–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol. 2013;16(1):23–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lamkanfi M, Dixit VM. Mechanisms and functions of inflam-masomes. Cell. 2014;157(5):1013–1022.

    CAS  PubMed  Google Scholar 

  148. Ulland TK, Ferguson PJ, Sutterwala FS. Evasion of inflamma-some activation by microbial pathogens. J Clin Invest. 2015;125(2):469–477.

    PubMed  PubMed Central  Google Scholar 

  149. Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25(5):308–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–687.

    PubMed  PubMed Central  Google Scholar 

  151. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–325.

    CAS  PubMed  Google Scholar 

  152. Mariathasan S, Newton K, Monack DM, et al. Differential acti-vation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213–218.

    CAS  PubMed  Google Scholar 

  153. Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem. 1989;264(10):5323–5326.

    CAS  PubMed  Google Scholar 

  154. Kostura MJ, Tocci MJ, Limjuco G, et al. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci USA. 1989;86(14):5227–5231.

    CAS  PubMed  Google Scholar 

  155. Thornberry NA, Bull HG, Calaycay JR, et al. A novel het-erodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356(6372):768–774.

    CAS  PubMed  Google Scholar 

  156. Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992;256(5053):97–100.

    CAS  PubMed  Google Scholar 

  157. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1 beta converting enzyme. Science. 1997;275(5297):206–209.

    CAS  PubMed  Google Scholar 

  158. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386(6625):619–623.

    CAS  PubMed  Google Scholar 

  159. Dinarello CA. Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann N Y Acad Sci. 1998;856:1-11.

    CAS  PubMed  Google Scholar 

  160. Fantuzzi G, Dinarello CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol. 1999;19(1):1–11.

    CAS  PubMed  Google Scholar 

  161. Sansonetti PJ, Phalipon A, Arondel J, et al. Caspase-1 activation of IL-lbeta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 2000;12(5):581–590.

    CAS  PubMed  Google Scholar 

  162. Kahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR. Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven pro-tein synthesis. J Immunol. 2005;175(11):7611–7622.

    CAS  PubMed  Google Scholar 

  163. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 2015;33:49-77.

    CAS  PubMed  Google Scholar 

  164. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–114.

    CAS  PubMed  Google Scholar 

  165. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243(1):206–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526–539.

    CAS  PubMed  Google Scholar 

  167. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92(4):501–509.

    CAS  PubMed  Google Scholar 

  168. Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000.

    CAS  PubMed  Google Scholar 

  169. Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341(6151):1246–1249.

    CAS  PubMed  Google Scholar 

  170. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cyto-plasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–1253.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Aachoui Y, Leaf IA, Hagar JA, etal. Caspase-11 protects against bacteria that escape the vacuole. Science. 2013;339(6122):975–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–121.

    CAS  PubMed  Google Scholar 

  173. Pacora P, Romero R, Maymon E, et al. Participation of the novel cytokine interleukin 18 in the host response to intra-amniotic infection. Am J Obstet Gynecol. 2000;183(5):1138–1143.

    CAS  PubMed  Google Scholar 

  174. Hoang M, Potter JA, Gysler SM, et al. Human fetal membranes generate distinct cytokine profiles in response to bacterial Tolllike receptor and nod-like receptor agonists. Biol Reprod. 2014; 90(2):39.

    PubMed  PubMed Central  Google Scholar 

  175. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004; 117(5): 561–574.

    CAS  PubMed  Google Scholar 

  176. Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14(1):10–22.

    CAS  PubMed  Google Scholar 

  177. Case CL, Kohler LJ, Lima JB, et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci USA. 2013;110(5):1851–1856.

    CAS  PubMed  Google Scholar 

  178. Broz P, Monack DM. Noncanonical inflammasomes: caspase-11 activation and effector mechanisms. PIoS Pathog. 2013;9(2): el003144.

    Google Scholar 

  179. Knodler LA, Crowley SM, Sham HP, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 2014;16(2):249–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Casson CN, Yu J, Reyes VM, et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci USA. 2015;112(21):6688–6693.

    CAS  PubMed  Google Scholar 

  181. Yang D, He Y, Munoz-Planillo R, Liu Q, Nunez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015;43(5):923–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82-95.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Sutterwala FS, Ogura Y, Zamboni DS, Roy CR, Flavell RA. NALP3: a key player in caspase-1 activation. J Endotoxin Res. 2006;12(4):251–256.

    CAS  PubMed  Google Scholar 

  184. Chae JJ, Cho YH, Lee GS, et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1beta acti-vation and severe autoinflammation in mice. Immunity. 2011;34(5):755–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflamma-some sensing of asbestos and silica. Science. 2008;320(5876):674–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflamma-some is essential for the development of silicosis. Proc Natl AcadSci USA. 2008;105(26):9035–9040.

    CAS  Google Scholar 

  187. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through pha-gosomal destabilization. Nat Immunol. 2008;9(8):847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Yamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukin-lbeta (IL-lbeta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 2009;284(19):12762–12771.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Cassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 2009;21(4):194–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Cassel SL, Sutterwala FS. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol. 2010;40(3):607–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Leemans JC, Cassel SL, Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev. 2011;243(1):152–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241.

    CAS  PubMed  Google Scholar 

  193. Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–232.

    CAS  PubMed  Google Scholar 

  194. Kool M, Petrilli V, De Smedt T, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008;181(6):3755–3759.

    CAS  PubMed  Google Scholar 

  195. Li H, Willingham SB, Ting JP, Re F. Cutting edge: inflamma-some activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol. 2008;181(1):17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Eisenbarth SC, Colegio OR, O’ Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immu-nostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Franchi L, Nunez G. The NLRP3 inflammasome is critical for aluminium hydroxide-mediated IL-1 beta secretion but dispensable for adjuvant activity. Eur J Immunol. 2008;38(8):2085–2089.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Demento SL, Eisenbarth SC, Foellmer HG, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine. 2009;27(23):3013–3021.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–230.

    CAS  PubMed  Google Scholar 

  200. Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for NLRP3 inflammasome activation. Immunity. 2013;39(2):311–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. O’Neill LA. Cardiolipin and the NLRP3 inflammasome. Cell Metab. 2013;18(5):610–612.

    PubMed  Google Scholar 

  202. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell. 2006;126(6):1135–1145.

    CAS  PubMed  Google Scholar 

  203. Munoz-Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aur-etts-induced activation of the NLRP3 inflammasome. J Immunol. 2009;183(6):3942–3948.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kanneganti TD, Body-Malapel M, Amer A, et al. Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281(48):36560–36568.

    CAS  PubMed  Google Scholar 

  205. Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ. ESX-1-dependent cytolysis in lysosome secretion and inflam-masome activation during mycobacterial infection. Cell Microbiol. 2008;10(9):1866–1878.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Muruve DA, Petrilli V, Zaiss AK, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452(7183):103–107.

    CAS  PubMed  Google Scholar 

  207. Thomas PG, Dash P, Aldridge JR Jr, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity. 2009;30(4):566–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Allen IC, Scull MA, Moore CB, et al. The NLRP3 inflamma-some mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Duncan JA, Gao X, Huang MT, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182(10):6460–6469.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Joly S, Ma N, Sadler JJ, Soil DR, Cassel SL, Sutterwala FS. Cutting edge: Candida albicans hyphae formation triggers activation of the NLRP3 inflammasome. J Immunol. 2009; 183(6): 3578–3581.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflamma-some recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206(1):79–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol. 2011;166(1):1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Rathinam VA, Vanaja SK, Waggoner L, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150(3):606–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Clay GM, Sutterwala FS, Wilson ME. NLR proteins and parasitic disease. Immunol Res. 2014;59(1–3):142–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Franchi L, Eigenbrod T, Nunez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflam-masome in the absence of microbial stimulation. J Immunol. 2009;183(2):792–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–1604.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Jaiswal MK, Agrawal V, Mailers T, Gilman-Sachs A, Hirsch E, Beaman KD. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. J Immunol. 2013;191(11):5702–5713.

    CAS  PubMed  Google Scholar 

  219. Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases sus-ceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490(7419):288–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Romero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011;24(12):1444–1455.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Gomez-Lopez N, Romero R, Plazyo O, et al. Intra-amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am JReprod Immunol. 2016;75(1):3–7.

    CAS  Google Scholar 

  222. Wilson KP, Black JA, Thomson JA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994;370(6487):270–275.

    CAS  PubMed  Google Scholar 

  223. Dinarello CA. Interleukin-1. Adv Pharmacol. 1994;25:21-51.

    CAS  PubMed  Google Scholar 

  224. Dinarello CA. The biological properties of interleukin-1. Eur Cytokine Netw. 1994;5(6):517–531.

    CAS  PubMed  Google Scholar 

  225. Dinarello CA. The interleukin-1 family: 10 years of discovery. FASEBJ. 1994;8(15):1314–1325.

    CAS  Google Scholar 

  226. Dinarello CA. Interleukin-1. Cytokine Growth Factor Rev. 1997;8(4):253–265.

    CAS  PubMed  Google Scholar 

  227. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519-550.

    CAS  PubMed  Google Scholar 

  228. Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol. 2014;35(12):631–640.

    CAS  PubMed  Google Scholar 

  229. Romero R, Durum S, Dinarello CA, Oyarzun E, Hobbins JC, Mitchell MD. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins. 1989;37(1):13–22.

    CAS  PubMed  Google Scholar 

  230. Hertelendy F, Romero R, Molnar M, Todd H, Baldassare JJ. Cytokine-initiated signal transduction in human myometrial cells. Am J Reprod Immunol. 1993;30(2–3):49–57.

    CAS  PubMed  Google Scholar 

  231. Hertelendy F, Rastogi P, Molnar M, Romero R. Interleukin-1 beta-induced prostaglandin E2 production in human myometrial cells: role of a pertussis toxin-sensitive component. Am J Reprod Immunol. 2001;45(3): 142–147.

    CAS  PubMed  Google Scholar 

  232. Belt AR, Baldassare JJ, Molnar M, Romero R, Hertelendy F. The nuclear transcription factor NF-kappaB mediates interleukin-lbeta-induced expression of cyclooxygenase-2 in human myometrial cells. AmJObstet Gynecol. 1999;181(2):359–366.

    CAS  Google Scholar 

  233. Watari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF 3rd. Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol. 1999;154(6):1755–1762.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Heng YJ, Liong S, Permezel M, Rice GE, Di Quinzio MK, Georgiou HM. The interplay of the interleukin 1 system in preg-nancy and labor. Reprod Sci. 2014;21(1):122–130.

    PubMed  PubMed Central  Google Scholar 

  235. Stock O, Gordon L, Kapoor J, et al. Chorioamnionitis occurring in women with preterm rupture of the fetal membranes is associated with a dynamic increase in mRNAs coding cytokines in the maternal circulation. Reprod Sci. 2015;22(7):852–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol. 1991;165(4 pt 1):969–971.

    CAS  PubMed  Google Scholar 

  237. Romero R, Sepulveda W, Mazor M, et al. The natural interleukin-1 receptor antagonist in term and preterm parturition. AmJObstet Gynecol. 1992;167(4 pt 1):863–872.

    CAS  Google Scholar 

  238. Gravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol. 1994;171(6):1660–1667.

    CAS  PubMed  Google Scholar 

  239. Witkin SS, Gravett MG, Haluska GJ, Novy MJ. Induction of interleukin-1 receptor antagonist in rhesus monkeys after intraamniotic infection with group B streptococci or interleukin-1 infusion. Am J Obstet Gynecol. 1994;171(6):1668–1672.

    CAS  PubMed  Google Scholar 

  240. Baggia S, Gravett MG, Witkin SS, Haluska GJ, Novy MJ. Interleukin-1 beta intra-amniotic infusion induces tumor necrosis factor-alpha, prostaglandin production, and preterm contractions in pregnant rhesus monkeys. JSoc Gynecol Investig. 1996;3(3):121–126.

    CAS  Google Scholar 

  241. Vadillo-Ortega F, Sadowsky DW, Haluska GJ, et al. Identification of matrix metalloproteinase-9 in amniotic fluid and amnio-chorion in spontaneous labor and after experimental intrauterine infection or interleukin-1 beta infusion in pregnant rhesus monkeys. Am J Obstet Gynecol. 2002;186(1):128–138.

    CAS  PubMed  Google Scholar 

  242. Sadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1 beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. AmJObstet Gynecol. 2006; 195(6): 1578–1589.

    CAS  Google Scholar 

  243. Aagaard K, Ganu R, Ma J, et al. Intraamniotic interleukin-1 (IL1P) induces histological choriamnionitis and alters the micro-biome in a primate model of inflammatory preterm birth. Am J Obstet Gynecol. 2014;208(1):S218.

    Google Scholar 

  244. Prince A, Ma J, Miller L, et al. Chorioamnionitis induced by intraamniotic injection of IL1, LPS or Ureaplasmaparvum is associated with an altered microbiome in a primate model of inflammatory preterm birth. Am J Obstet Gynecol. 2014;212(1):S153.

    Google Scholar 

  245. Presicce P, Senthamaraikannan P, Alvarez M, et al. Neutrophil recruitment and activation in decidua with intra-amniotic IL- 1 beta in the preterm rhesus macaque. Biol Reprod. 2015;92(2):56.

    Google Scholar 

  246. Jacobsson B, Hoist RM, Mattsby-Baltzer I, Nikolaitchouk N, Wennerholm UB, Hagberg H. Interleukin-18 in cervical mucus and amniotic fluid: relationship to microbial invasion of the amniotic fluid, intra-amniotic inflammation and preterm delivery. BJOG. 2003;110(6):598–603.

    CAS  PubMed  Google Scholar 

  247. Okamura H, Tsutsi H, Komatsu T, et al. Cloning of a new cyto-kine that induces IFN-gamma production by T cells. Nature. 1995;378(6552):88–91.

    CAS  PubMed  Google Scholar 

  248. Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol. 1996;156(11):4274–4279.

    CAS  PubMed  Google Scholar 

  249. Takeda K, Tsutsui H, Yoshimoto T, et al. Defective NK cell activity and Thl response in IL-18-deficient mice. Immunity. 1998;8(3):383–390.

    CAS  PubMed  Google Scholar 

  250. Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. Jleukoc Biol. 1998;63(6):658–664.

    CAS  Google Scholar 

  251. Dinarello CA. IL-18: A THl-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immu-nol. 1999;103(1 pt 1):11–24.

    CAS  Google Scholar 

  252. Dinarello CA. Interleukin-18. Methods. 1999;19(1):121–132.

    CAS  PubMed  Google Scholar 

  253. Novick D, Kim S, Kaplanski G, Dinarello CA. Interleukin-18, more than a Thl cytokine. Semin Immunol. 2013;25(6):439–448.

    CAS  PubMed  Google Scholar 

  254. Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 Binding Protein. Front Immunol. 2013;4:289.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nardhy Gomez-Lopez MSc, PhD or Roberto Romero MD, DMedSci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Lopez, N., Romero, R., Xu, Y. et al. A Role for the Inflammasome in Spontaneous Preterm Labor With Acute Histologic Chorioamnionitis. Reprod. Sci. 24, 1382–1401 (2017). https://doi.org/10.1177/1933719116687656

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116687656

Navigation