Skip to main content
Log in

Variable Methylation Potential in Preterm Placenta: Implication for Epigenetic Programming of the Offspring

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Children born preterm are reported to be at increased risk of developing noncommunicable diseases in later life. Altered placental DNA methylation patterns are implicated in fetal programming of adult diseases. Our earlier animal studies focus on micronutrients (folic acid, vitamin B12) and long-chain polyunsaturated fatty acids (LCPUFAs) that interact in the I carbon cycle, thereby influencing methylation reactions. Our previous studies in women delivering preterm show altered plasma levels of micronutrients and lower plasma LCPUFA levels. We postulate that alterations in the micronutrient metabolism may affect the regulation of enzymes, methionine adenosyltransferase (MAT2A), and SAH-hydrolase (AHCY), involved in the production of methyl donor S-adenosylmethionine (SAM), thereby influencing the methylation potential (MP) in the placenta of women delivering preterm. The present study, therefore, examines the mRNA, protein levels of enzymes (MAT2A and AHCY), SAM, S-adenosylhomocysteine (SAH) levels, and global DNA methylation levels from preterm (n = 73) and term (n = 73) placentae. The enzyme messenger RNA (mRNA) levels were analyzed by real-time quantitative polymerase chain reaction, protein levels by enzyme-linked immunosorbent assay, and SAM-SAH levels by high-performance liquid chromatography. The mRNA levels for MAT2A and AHCY are higher (P < .05 for both) in the preterm group as compared to the term group. S-Adenosylmethionine and SAH levels were similar in both groups, although SAM:SAH ratio was lower (P < .05) in the preterm group as compared to the term group. The global DNA methylation levels were higher (P < .05) in women delivering small for gestation age infants as compared to women delivering appropriate for gestation age infants at term. Our data showing lower MP in the preterm placenta may have implications for the epigenetic programming of the developing fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howson CP, Kinney MV, McDougall L, Lawn JE; Born Too Soon Preterm Birth Action Group. Born Too Soon: preterm birth matters. Reprod Health. 2013;10(suppl 1):S1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blencowe H, Lee AC, Cousens S, et al. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr Res. 2013;74(suppl 1):17–34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lawn JE, Davidge R, Paul VK, et al. Born too soon: care for the preterm baby. Reprod Health. 2013;10(suppl 1):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hecht JL, Allred EN, Kliman HJ, et al. Histological characteristics of singleton placentas delivered before the 28th week of gestation. Pathology. 2008;40(4):372–376.

    Article  PubMed  Google Scholar 

  5. Hirnes KP, Simhan HN. Risk of recurrent preterm birth and placental pathology. Obstet Gynecol. 2008;112(1):121–126.

    Article  Google Scholar 

  6. Armstrong-Wells J, Post MD, Donnelly M, Manco-Johnson MJ, Fisher BM, Winn VD. Patterns of placental pathology in preterm premature rupture of membranes. J Dev Orig Health Dis. 2013;4(3):249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol. 2009;62(2):78–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vo T, Hardy DB. Molecular mechanisms underlying the fetal programming of adult disease. J Cell Commun Signal. 2012;6(3):139–153.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reynolds LP, Caton JS. Role of the pre- and post-natal environment in developmental programming of health and productivity. Mol Cell Endocrinol. 2012;354(1-2):54–59.

    Article  CAS  PubMed  Google Scholar 

  10. Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr. 2012;3(1):21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joseph J, Loscalzo J. Methoxistasis: integrating the roles of homocysteine and folic acid in cardiovascular pathobiology. Nutrients. 2013;5(8):3235–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khulan B, Cooper WN, Skinner BM, et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum Mol Genet. 2012;21(9):2086–2101.

    Article  CAS  PubMed  Google Scholar 

  13. Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One. 2011;6(3):e17706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khot V, Kale A, Joshi A, Chavan-Gautam P, Joshi S. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids. Biomed Res Int. 2014;2014:613078.

    Article  PubMed  PubMed Central  Google Scholar 

  15. da Silva VC, Fernandes L, Haseyama EJ, et al. Effect of vitamin B deprivation during pregnancy and lactation on homocysteine metabolism and related metabolites in brain and plasma of mice offspring. PLoS One. 2014;9(4):e92683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kramer DL, Porter CW, Borchardt RT, Sufrin JR. Combined modulation of S-adenosylmethionine biosynthesis and S-adenosylhomocysteine metabolism enhances inhibition of nucleic acid methylation and L1210 cell growth. Cancer Res. 1990;50(13):3838–3842.

    CAS  PubMed  Google Scholar 

  17. Dhobale M, Chavan P, Kulkarni A, Mehendale S, Pisal H, Joshi S. Reduced folate, increased vitamin B(12) and homocysteine concentrations in women delivering preterm. Ann Nutr Metab. 2012;61(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  18. Dhobale MV, Wadhwani N, Mehendale SS, Pisal HR, Joshi SR. Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot Essent Fatty Acids. 2011;85(3-4):149–153.

    Article  CAS  PubMed  Google Scholar 

  19. Villar J, CheikhIsmail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–868.

    Article  PubMed  Google Scholar 

  20. Villar J, Giuliani F, Fenton TR, Ohuma EO, Ismail LC, Kennedy SH; INTERGROWTH-21st Consortium. INTERGROWTH-21st very preterm size at birth reference charts. Lancet. 2016;387(10021):844–845.

    Article  PubMed  Google Scholar 

  21. Wadhwani N, Patil V, Pisal H, et al. Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2014;91(1-2):21–30.

    Article  CAS  PubMed  Google Scholar 

  22. Sundrani DP, Reddy US, Chavan-Gautam PM, Mehendale SS, Chandak GR, Joshi SR. Altered methylation and expression patterns of genes regulating placental angiogenesis in preterm pregnancy. Reprod Sci. 2014;21(12):1508–1517.

    Article  CAS  PubMed  Google Scholar 

  23. Gaines TA, Zhang W, Wang D, et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA. 2010;107(3):1029–1034.

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  25. Berasain C, Hevia H, Fernandez-Irigoyen J, et al. Methylthioadenosine Phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma. Biochim Biophys Acta. 2004;1690(3):276–284.

    Article  CAS  PubMed  Google Scholar 

  26. Rathod RS, Khaire AA, Kale AA, Joshi SR. Beneficial effects of omega-3 fatty acids and vitamin B12 supplementation on brain docosahexaenoic acid, brain derived neurotrophic factor, and cognitive performance in the second-generation Wistar rats. Biofactors. 2015;41(4):261–272.

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):65–275.

    Google Scholar 

  28. Wagner J, Danzin C, Huot-Olivier S, Claverie N, Palfreyman MG. High-performance liquid chromatographic analysis of S-adenosylmethionine and its metabolites in rat tissues: interrelationship with changes in biogenic catechol levels following treatment with L-dopa. J Chromatogr. 1984;290:247–262.

    Article  CAS  PubMed  Google Scholar 

  29. Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: a control switch that regulates liver function. FASEB J. 2002;16(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  30. Lu SC, Mato JM. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008;23(1):S73–S77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kloor D, Stumvoll W, Schmid H, Kömpf J, Mack A, Osswald H. Localization of S-adenosylhomocysteine hydrolase in the rat kidney. J Histochem Cytochem. 2000;48(2):211–218.

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Li Y, Chen J, et al. Copper ions inhibit S-adenosylhomocysteine hydrolase by causing dissociation of NAD+ cofactor. Biochemistry. 2007;46(41):11451–11458.

    Article  CAS  PubMed  Google Scholar 

  33. Gheorghe CP, Goyal R, Mittal A, Longo LD. Gene expression in the placenta: maternal stress and epigenetic responses. Lnt J Dev Biol. 2010;54(2-3):507–523.

    Article  CAS  Google Scholar 

  34. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  35. Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Rep. 2012;5(4):883–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu SC. S-Adenosylmethionine. Lnt J Biochem Cell Biol. 2000;32(4):391–395.

    Article  CAS  Google Scholar 

  37. Zhou S, Zhang Z, Xu G. Notable epigenetic role of hyperhomocysteinemia in atherogenesis. Lipids Health Dis. 2014;13:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Steed MM, Tyagi SC. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal. 2011;15(7):1927–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riksen NP, Rongen GA, Blom HJ, Russel FG, Boers GH, Smits P. Potential role for adenosine in the pathogenesis of the vascular complications of hyperhomocysteinemia. Cardiovasc Res. 2003;59(2):271–276.

    Article  CAS  PubMed  Google Scholar 

  40. Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195–204.

    Article  CAS  PubMed  Google Scholar 

  41. Chavan-Gautam P, Sundrani D, Pisal H, Nimbargi V, Mehendale S, Joshi S. Gestation-dependent changes in human placental global DNA methylation levels. Mol Reprod Dev. 2011;78(3):150.

    Article  CAS  PubMed  Google Scholar 

  42. Yang H, Huang ZZ, Zeng Z, Chen C, Selby RR, Lu SC. Role of promoter methylation in increased methionine adenosyltransferase 2A expression in human liver cancer. Am J Physiol Gastrointest Liver Physiol. 2008;280(2):G184–G190.

    Article  Google Scholar 

  43. Chen NC, Yang F, Capecci LM, et al. Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J. 2010;24(8):2804–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang T, Wahlqvist ML, Li D. Effect of n-3 polyunsaturated fatty acid on gene expression of the critical enzymes involved in homocysteine metabolism. Nutr J. 2012;11:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Khot V, Chavan-Gautam P, Joshi S. Proposing interactions between maternal phospholipids and the one carbon cycle: a novel mechanism influencing the risk for cardiovascular diseases in the offspring in later life. Life Sci. 2014;129:16–21.

    Article  PubMed  CAS  Google Scholar 

  46. Pérez-Sepúlveda A, España-Perrot PP, Fernández XB, et al. Levels of key enzymes of methionine-homocysteine metabolism in preeclampsia. Biomed Res Int. 2013;2013(2013):731962.

    PubMed  PubMed Central  Google Scholar 

  47. Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol. 2013;59(4):830–841.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Kavran JM, Chen Z, et al. Regulation of S-adenosylhomocysteine hydrolase by lysine acetylation. J Biol Chem. 2014;289(45):31361–31372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramani K, Donoyan S, Tomasi ML, Park S. Role of methionine adenosyltransferase α2 and β phosphorylation and stabilization in human hepatic stellate cell trans-differentiation. J Cell Physiol. 2015;230(5):1075–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hargrove JL, Schmidt FH. The role of mRNA and protein stability in gene expression. FASEB J. 1989;3(12):2360–2370.

    Article  CAS  PubMed  Google Scholar 

  51. Vâzquez-Chantada M, Fernández-Ramos D, Embade N, et al. HuR/methyl-HuR and AUF1 regulate the MAT expressed during liver proliferation, differentiation, and carcinogenesis. Gastroenterology. 2010;138(5):1943–1953.

    Article  PubMed  CAS  Google Scholar 

  52. Koturbash I, Melnyk S, James SJ, Beland FA, Pogribny IP. Role of epigenetic and miR-22 and miR-29b alterations in the down-regulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog. 2013;52(4):318–327.

    Article  CAS  PubMed  Google Scholar 

  53. Yang H, Sadda MR, Yu V, et al. Induction of human methionine adenosyltransferase 2A expression by tumor necrosis factor alpha. Role of NF-kappa B and AP-1. J Biol Chem. 2003;278(51):50887–50896.

    Article  CAS  PubMed  Google Scholar 

  54. Novakovic B, Yuen RK, Gordon L, et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics. 2011;12:529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yideng J, Jianzhong Z, Ying H, et al. Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol. 2007;26(8):603–611.

    Article  PubMed  CAS  Google Scholar 

  56. Phillips T. The role of methylation in gene expression. Nat Educ. 2008;1(1):116.

    Google Scholar 

  57. Dominguez-Salas P, Moore SE, Cole D, et al. DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. Am J Clin Nutr. 2013;97(6):1217–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han XB, Zhang HP, Cao CJ, et al. Aberrant DNA methylation of the PDGF gene in homocysteine-mediated VSMC proliferation and its underlying mechanism. Mol Med Rep. 2014;10(2):947–954.

    Article  CAS  PubMed  Google Scholar 

  59. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sundrani D, Chavan-Gautam P, Pisal H, et al. Matrix metalloprotei-nases-2, -3 and tissue inhibitors of metalloproteinases-1, -2 in placentas from preterm pregnancies and their association with one-carbon metabolites. Reproduction. 2013;145(4):401–410.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana R. Joshi PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khot, V.V., Chavan-Gautam, P., Mehendale, S. et al. Variable Methylation Potential in Preterm Placenta: Implication for Epigenetic Programming of the Offspring. Reprod. Sci. 24, 891–901 (2017). https://doi.org/10.1177/1933719116671001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116671001

Keywords

Navigation