Skip to main content
Log in

The Adaptor Protein p62 Mediates Nuclear Factor κB Activation in Response to Inflammation and Facilitates the Formation of Prolabor Mediators in Human Myometrium

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preventing spontaneous preterm birth is one of the most important issues facing perinatal medicine today. The pathophysiology of preterm labor, the single biggest cause of preterm birth, is poorly understood. Inflammation, however, plays a significant role in the terminal processes of human labor, which include myometrial contractions. Nuclear factor κB (NF-κB) drives the transcription of proinflammatory mediators involved in the terminal effector pathways of human labor and delivery. Recent studies in nongestational tissues have shown that the adaptor protein p62 interacts with NF-κB to induce inflammation. The aim of this study was to determine the role of p62 in the genesis of NF-κB-induced proinflammatory and prolabur mediators. Human spontaneous term labor was associated with increased p62 messenger RNA (mRNA) and protein expression in myometrium. Myometrial cells treated with proinflammatory cytokines interleukin Iβ (IL-Iβ) and tumor necrosis factor alpha (TNF-α) also significantly increased p62 mRNA and protein expression. Functional studies using p62 small interfering RNA (siRNA) demonstrated a significant attenuation of TNF-α- and IL-Iβ-induced proinflammatory cytokines (IL-6) and chemokine (IL-8 and monocyte chemoattractant protein I [MCP-I]) mRNA expression and secretion, expression of cyclooxygenase 2, release of prostaglandin F (PGF), and expression of the prostaglandin F receptor (FP). In addition, siRNA knockdown of p62 significantly suppressed IL-Iβ- and TNF-α-induced NF-κB activation. Collectively, these studies suggest that p62 is involved in the genesis of NF-κB-induced proinflammatory and prolabor mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinney MV, Lawn JE, Howson CP, Belizan J. 15 million preterm births annually: what has changed this year? Reprod Health. 2012;9:28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151–2161.

    Article  PubMed  Google Scholar 

  3. Norman JE, Shennan AH. Prevention of preterm birth-why can’t we do any better? Lancet. 2012;381(9862):184–185.

    Article  PubMed  Google Scholar 

  4. Howson CP, Kinney MV, Lawn JE. Born Too Soon: The Global Action Report on Preterm Birth. Geneva: World Health Organization; 2012.

    Google Scholar 

  5. Howson CP, Kinney MV, McDougall L, Lawn JE; Born Too Soon Preterm Birth Action Group. Born Toon Soon: preterm birth matters. Reprod Health. 2013;10(suppl 1):S1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Romero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann N Y Acad Sci. 1994;734:414–429.

    Article  CAS  PubMed  Google Scholar 

  8. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.

    Article  CAS  PubMed  Google Scholar 

  9. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    Article  CAS  PubMed  Google Scholar 

  10. Rauk PN, Chiao JP. Interleukin-1 stimulates human uterine prostaglandin production through induction of cyclooxygenase-2 expression. Am J Reprod Immunol. 2000;43(3):152–159.

    Article  CAS  PubMed  Google Scholar 

  11. Bartlett SR, Sawdy R, Mann GE. Induction of cyclooxygenase-2 expression in human myometrial smooth muscle cells by interleukin-1beta: involvement of p38 mitogen-activated protein kinase. J Physiol. 1999;520(pt 2):399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Erkinheimo TL, Saukkonen K, Narko K, Jalkanen J, Ylikorkala O, Ristimaki A. Expression of cyclooxygenase-2 and prostanoid receptors by human myometrium. J Clin Endocrinol Metab. 2000;85(9):3468–3475.

    CAS  PubMed  Google Scholar 

  13. Bokstrom H, Brannstrom M, Alexandersson M, Norstrom A. Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy. Hum Reprod. 1997;12(3):586–590.

    Article  CAS  PubMed  Google Scholar 

  14. Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002;66(2):445–449.

    Article  CAS  PubMed  Google Scholar 

  15. Lappas M, Rice GE. The role and regulation of the nuclear factor kappa B signalling pathway in human labour. Placenta. 2007;28(5-6):543–556.

    Article  CAS  PubMed  Google Scholar 

  16. Lappas M, Rice GE. Transcriptional regulation of the processes of human labour and delivery. Placenta. 2009;30(suppl A):S90–S95.

    Article  PubMed  CAS  Google Scholar 

  17. Lindstrom TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction. 2005;130(5):569–581.

    Article  CAS  PubMed  Google Scholar 

  18. Liong S, Lappas M. The stress-responsive heme oxygenase (HO)-1 isoenzyme is increased in labouring myometrium where it regulates contraction-associated proteins. Am J Reprod Immunol. 2015;74(1):62–76.

    Article  CAS  PubMed  Google Scholar 

  19. Khanjani S, Terzidou V, Johnson MR, Bennett PR. NFkappaB and AP-1 drive human myometrial IL8 expression. Mediators Inflamm. 2012;2012:504952.

    Google Scholar 

  20. Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009;137(6):1001–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duran A, Serrano M, Leitges M, et al. The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell. 2004;6(2):303–309.

    Article  CAS  PubMed  Google Scholar 

  22. Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J. 1999;18(11):3044–3053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duran A, Linares JF, Galvez AS, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. 2008;13(4):343–354.

    Article  CAS  PubMed  Google Scholar 

  24. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J. The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem. 2005;280(42):35625–35629.

    Article  CAS  PubMed  Google Scholar 

  25. Sanz L, Diaz-Meco MT, Nakano H, Moscat J. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J. 2000;19(7):1576–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seibold K, Ehrenschwender M. p62 regulates CD40-mediated NFkappaB activation in macrophages through interaction with TRAF6. Biochem Biophys Res Commun. 2015;464(1):330–335.

    Article  CAS  PubMed  Google Scholar 

  27. Lee HM, Shin DM, Yuk JM, et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol. 2011;186(2):1248–1558.

    Article  CAS  PubMed  Google Scholar 

  28. Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137(6):1062–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim R, Tran HT, Liong S, Barker G, Lappas M. The transcription factor interferon regulatory factor-1 (IRF1) plays a key role in the terminal effector pathways of human preterm labor. Biol Reprod. 2016;94(2):32.

    Article  PubMed  CAS  Google Scholar 

  30. Lim R, Barker G, Lappas M. A novel role for FOXO3 in human labor: increased expression in laboring myometrium, and regulation of proinflammatory and prolabor mediators in pregnant human myometrial cells. Biol Reprod. 2013;88(6):156.

    Article  PubMed  Google Scholar 

  31. Lim R, Barker G, Lappas M. TREM-1 expression is increased in human placentas from severe early-onset preeclamptic pregnancies where it may be involved in syncytialization. Reprod Sci. 2014;21(5):562–572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta. 2002;23(4):257–273.

    Article  CAS  PubMed  Google Scholar 

  33. Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–57.

    Article  CAS  PubMed  Google Scholar 

  34. Gomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 2010;88(4):625–633.

    Article  CAS  PubMed  Google Scholar 

  35. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition — a review. Placenta. 2003;24(suppl A):S33–S46.

    Article  PubMed  CAS  Google Scholar 

  36. Lappas M, Rice GE. Phospholipase A2 isozymes in pregnancy and parturition. Prostaglandins Leukot Essent Fatty Acids. 2004;70(2):87–100.

    Article  CAS  PubMed  Google Scholar 

  37. Roh CR, Oh WJ, Yoon BK, Lee JH. Up-regulation of matrix metalloproteinase-9 in human myometrium during labour: a cytokine-mediated process in uterine smooth muscle cells. Mol Hum Reprod. 2000;6(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  38. Tattersall M, Engineer N, Khanjani S, et al. Pro-labour myometrial gene expression: are preterm labour and term labour the same? Reproduction. 2008;135(4):569–579.

    Article  CAS  PubMed  Google Scholar 

  39. Tribe RM, Moriarty P, Dalrymple A, Hassoni AA, Poston L. Interleukin-1beta induces calcium transients and enhances basal and store operated calcium entry in human myometrial smooth muscle. Biol Reprod. 2003;68(5):1842–1849.

    Article  CAS  PubMed  Google Scholar 

  40. Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol. 1991;165(4 pt 1):969–971.

    Article  CAS  PubMed  Google Scholar 

  41. Sadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol. 2006;195(6):1578–1589.

    Article  CAS  PubMed  Google Scholar 

  42. Romero R, Tartakovsky B. The natural interleukin-1 receptor antagonist prevents interleukin-1-induced preterm delivery in mice. Am J Obstet Gynecol. 1992;167(4 pt 1):1041–1045.

    Article  CAS  PubMed  Google Scholar 

  43. Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood). 2013;238(5):525–538.

    Article  CAS  Google Scholar 

  44. Seibenhener ML, Geetha T, Wooten MW. Sequestosome 1/p62 — more than just a scaffold. FEBS Lett. 2007;581(2):175–179.

    Article  CAS  PubMed  Google Scholar 

  45. Lim R, Barker G, Lappas M. The transcription factor Nrf2 is decreased after spontaneous term labour in human fetal membranes where it exerts anti-inflammatory properties. Placenta. 2015;36(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  46. Lappas M, Yee K, Permezel M, Rice GE. Lipopolysaccharide and TNF-alpha activate the nuclear factor kappa B pathway in the human placental JEG-3 cells. Placenta. 2006;27(6-7):568–575.

    Article  CAS  PubMed  Google Scholar 

  47. Lappas M, Yee K, Permezel M, Rice GE. Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology. 2005;146(3):1491–1497.

    Article  CAS  PubMed  Google Scholar 

  48. De Silva D, Mitchell MD, Keelan JA. Inhibition of choriodecidual cytokine production and inflammatory gene expression by selective I-kappaB kinase (IKK) inhibitors. Br J Pharmacol. 2010;160(7):1808–1822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Keelan JA, Khan S, Yosaatmadja F, Mitchell MA. Prevention of inflammatory activation of human gestational membranes in an ex vivo model using a pharmacological NF-kappa B inhibitor. J Immunol. 2009;183(8):5270–5278.

    Article  CAS  PubMed  Google Scholar 

  50. Teramachi J, Silbermann R, Yang P, et al. Blocking the ZZ domain of sequestosome 1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo. Leukemia. 2016;30(2):390–398.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lappas PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lappas, M. The Adaptor Protein p62 Mediates Nuclear Factor κB Activation in Response to Inflammation and Facilitates the Formation of Prolabor Mediators in Human Myometrium. Reprod. Sci. 24, 762–772 (2017). https://doi.org/10.1177/1933719116669058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116669058

Keywords

Navigation