Skip to main content
Log in

HELLP Syndrome: Altered Hypoxic Response of the Fatty Acid Oxidation Regulator SIRT 4

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome is frequently observed in mothers whose offspring have long-chain fatty acid oxidation defects. We previously found that fatty acid oxidation is compromised not only in these inborn errors of metabolism but also in human umbilical vein endothelial cells (HUVECs) from all pregnancies complicated by the HELLP syndrome. Sirtuins are oxidized nicotinamide adenine dinucleotide (NAD+)dependent deacetylases linked to the metabolic status of the cell. SIRT 4 is known to have regulatory functions in fatty acid oxidation. The HELLP syndrome is often associated with short-term hypoxia. We studied sirtuins (SIRT 1, SIRT 3, and SIRT 4) in HUVECs from pregnancies complicated by the HELLP syndrome and uncomplicated pregnancies exposed to hypoxia (n = 7 controls, 7 HELLP; 0, 10, 60, or 120 minutes of 2% O2). Protein levels of SIRT 4 were significantly higher in HUVECs from HELLP compared to control after 60 and 120 minutes of hypoxia. The NAD+ levels increased in a time-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinstein L. Syndrome of hemolysis, elevated liver enzymes, and platelet count: a severe consequence of hypertension in pregnancy. 1982. Am J Obstet Gynecol. 2005;193(3 pt 1):859; discussion 860.

    Article  PubMed  Google Scholar 

  2. Jonsson M, Agren J, Norden-Lindeberg S, Ohlin A, Hanson U. Neonatal encephalopathy and the association to asphyxia in labor. Am J Obstet Gynecol. 2014;667(6):667.e1-e8.

    Google Scholar 

  3. Aslan H, Gul A, Cebeci A. Neonatal outcome in pregnancies after preterm delivery for HELLP syndrome. Gynecol Obstet Invest. 2004;58(2):96–99.

    Article  PubMed  Google Scholar 

  4. Raval DS, Co S, Reid MA, Pildes R. Maternal and neonatal outcome of pregnancies complicated with maternal HELLP syndrome. J Perinatol. 1997;17(4):266–269.

    CAS  PubMed  Google Scholar 

  5. Harms K, Rath W, Herting E, Kuhn W. Maternal hemolysis, elevated liver enzymes, low platelet count, and neonatal outcome. Am J Perinatol. 1995;12(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rajakumar A, Brandon HM, Daftary A, Ness R, Conrad KP. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta. 2004;25(10):763–769.

    Article  CAS  PubMed  Google Scholar 

  7. Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90(7):4299–4308.

    Article  CAS  PubMed  Google Scholar 

  8. Tal R, Shaish A, Barshack I, et al. Effects of hypoxia-inducible factor-1alpha overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am J Pathol. 2010;177(6):2950–2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Balsak D, Togrul C, Ekinci C, et al. Severe pre-eclampsia complicated by HELLP syndrome alterations in the structure of the umbilical cord (morphometric and immunohistochemical study). Biotechnol Biotechnol Equip. 2015;29(2):345–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goel A, Jamwal KD, Ramachandran A, Balasubramanian KA, Eapen CE. Pregnancy-related liver disorders. J Clin Exp Hepatol. 2014;4(2):151–162.

    Article  PubMed  Google Scholar 

  11. Ibdah JA, Bennett MJ, Rinaldo P, et al. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med. 1999;340(22):1723–1731.

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, Yamada J, Zhao Y, Strauss AW, Ibdah JA. Prospective screening for pediatric mitochondrial trifunctional protein defects in pregnancies complicated by liver disease. JAMA. 2002;288(17):2163–2166.

    Article  PubMed  Google Scholar 

  13. Illsinger S, Janzen N, Sander S, et al. Preeclampsia and HELLP syndrome: impaired mitochondrial function in umbilical endothe-lial cells. Reprod Sci. 2010;17(3):219–226.

    Article  CAS  PubMed  Google Scholar 

  14. Bartha JL, Visiedo F, Fernandez-Deudero A, Bugatto F, Perdomo G. Decreased mitochondrial fatty acid oxidation in placentas from women with preeclampsia. Placenta. 2012;33(2):132–134.

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Yang Z, Ding X, Wang Y, Han Y. Effects of serum from patients with early-onset pre-eclampsia, HELLP syndrome, and antiphospholipid syndrome on fatty acid oxidation in trophoblast cells. Arch Gynecol Obstet. 2015;292(3):559–567.

    Article  CAS  PubMed  Google Scholar 

  16. Ding X, Yang Z, Han Y, Yu H. Correlation of long-chain fatty acid oxidation with oxidative stress and inflammation in pre-eclampsia-like mouse models. Placenta. 2015;36(12):1442–1449.

    Article  CAS  PubMed  Google Scholar 

  17. Wu YT, Lee HC, Liao CC, Wei YH. Regulation of mitochondrial F(o)F(1)ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977bp deletion of mitochon-drial DNA. Biochim Biophys Acta. 2013;1832(1):216–227.

    Article  CAS  PubMed  Google Scholar 

  18. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation. J Biol Chem. 2012;287(51):42419–42427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941–954.

    Article  CAS  PubMed  Google Scholar 

  23. Nasrin N, Wu X, Fortier E, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010;285(42):31995–32002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA. 2007;104(31):12861–12866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105(38):14447–14452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacety-lation. Nature. 2010;464(7285):121–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magann EF, Martin J. Jr. Twelve steps to optimal management of HELLP syndrome. Clin Obstet Gynecol. 1999;42(3):532–550.

    Article  CAS  PubMed  Google Scholar 

  28. Martin JN Jr, Blake PG, Perry KG Jr, McCaul JF, Hess LW, Martin RW. The natural history of HELLP syndrome: patterns of disease progression and regression. Am J Obstet Gynecol. 1991; 164(6 pt 1):1500–1509; discussion 1509-1513.

    Article  PubMed  Google Scholar 

  29. Ulrich-Merzenich G, Metzner C, Bhonde RR, Malsch G, Schiermeyer B, Vetter H. Simultaneous isolation of endothelial and smooth muscle cells from human umbilical artery or vein and their growth response to low-density lipoproteins. In Vitro Cell Dev Biol Anim. 2002;38(5):265–272.

    Article  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  31. Skokowa J, Lan D, Thakur BK, et al. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med. 2009;15(2):151–158.

    Article  CAS  PubMed  Google Scholar 

  32. Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013;50(5):686–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Das AM, Harris DA. Regulation of the mitochondrial ATP synthase in intact rat cardiomyocytes. Biochem J. 1990;266(2):355–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho L, Titus AS, Banerjee KK, et al. SIRT4 regulates ATP home-ostasis and mediates a retrograde signaling via AMPK. Aging (Albany NY). 2013;5(11):835–849.

    Article  CAS  Google Scholar 

  35. Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-jun N-terminal kinase 1 (JNK1) activation contributes to hepatic stea-tosis in obesity. J Biol Chem. 2011;286(25):22227–22234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Noriega LG, Feige JN, Canto C, et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011;12(10):1069–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong S, Salazar G, Patrushev N, Alexander RW. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem. 2011;286(7):5289–5299.

    Article  CAS  PubMed  Google Scholar 

  38. Abdelmohsen K, Pullmann R Jr, Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007;25(4):543–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laurent G, de Boer VC, Finley LW, et al. SIRT4 represses per-oxisome proliferator-activated receptor alpha activity to suppress hepatic fat oxidation. Mol Cell Biol. 2013;33(22):4552–4561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams MA, King IB, Sorensen TK, et al. Risk of preeclampsia in relation to elaidic acid (trans fatty acid) in maternal erythro-cytes. Gynecol Obstet Invest. 1998;46(2):84–87.

    Article  CAS  PubMed  Google Scholar 

  41. Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–22647.

    CAS  PubMed  Google Scholar 

  42. Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002;16(10):1151–1162.

    Article  CAS  PubMed  Google Scholar 

  43. Brown CM, Garovic VD. Mechanisms and management of hypertension in pregnant women. Curr Hypertens Rep. 2011;13(5):338–346.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Firoz T, Magee LA, MacDonell K, et al. Oral antihypertensive therapy for severe hypertension in pregnancy and postpartum: a systematic review. BJOG. 2014;121(10):1210–8; discussion 1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kattah AG, Garovic VD. The management of hypertension in pregnancy. Adv Chronic Kidney Dis. 2013;20(3):229–239.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Magee LA, Abalos E, von Dadelszen P, et al. How to manage hypertension in pregnancy effectively. Br J Clin Pharmacol. 2011;72(3):394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Browning MF, Levy HL, Wilkins-Haug LE, Larson C, Shih VE. Fetal fatty acid oxidation defects and maternal liver disease in pregnancy. Obstet Gynecol. 2006;107(1):115–120.

    Article  CAS  PubMed  Google Scholar 

  48. Innes AM, Seargeant LE, Balachandra K, et al. Hepatic carnitine palmitoyltransferase I deficiency presenting as maternal illness in pregnancy. Pediatr Res. 2000;47(1):43–45.

    Article  CAS  PubMed  Google Scholar 

  49. Maier JT, Schalinski E, Haberlein C, Gottschalk U, Hellmeyer L. Acute fatty liver of pregnancy and its differentiation from other liver diseases in pregnancy. Geburtshilfe Frauenheilkd. 2015;75(8):844–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee NM, Brady CW. Liver disease in pregnancy. World J Gastroenterol. 2009;15(8):897–906.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ghosh PM, Shu ZJ, Zhu B, et al. Role of beta-adrenergic receptors in regulation of hepatic fat accumulation during aging. J Endo-crinol. 2012;213(3):251–261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anibh Martin Das MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandvoß, M., Potthast, A.B., von Versen-Höynck, F. et al. HELLP Syndrome: Altered Hypoxic Response of the Fatty Acid Oxidation Regulator SIRT 4. Reprod. Sci. 24, 568–574 (2017). https://doi.org/10.1177/1933719116667216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116667216

Keywords

Navigation