Skip to main content

Advertisement

Log in

Maternal Weight Gain Regulates Omega-3 Fatty Acids in Male, Not Female, Neonates: A Cross-Sectional Study

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The fetus largely depends on maternal supply and placental transport for its source of long-chain polyunsaturated fatty acids (LCPUFAs), which are essential for proper neurological and cardiovascular development. Pregnancy complications such as diabetes reduces neonatal LCPUFA supply, but little is known of how fatty acid delivery is affected by maternal body type or weight gain in uncomplicated pregnancies. In a cross-sectional study of maternal-neonatal pairs at term, we sought to determine the effect of gestational weight gain on neonatal LCPUFA supply. Forty maternal-neonatal pairs of uncomplicated (no gestational hypertension or diabetes) term pregnancies were recruited upon admission to Oregon Health & Science University Labor & Delivery for scheduled cesarean section. Maternal and umbilical cord plasma fatty acid profiles were measured using gas chro-matography-mass spectrophotometry. First trimester weight gain was negatively correlated with maternal n-3 LCPUFA (r = −0.80, P = .0002), and this was not affected by fetal sex. High maternal weight gain in the first trimester was negatively associated with cord n-3 polyunsaturated fatty acid levels (r = −0.70, P = .03) and placental thickness (r = −0.69, P = .03) in male, but not female, offspring. High maternal weight gain in the first trimester is associated with a thinner placenta and low levels of n-3 LCPUFA in male offspring. Further study is required to confirm that male offspring are at a higher risk of poor outcomes associated with high maternal weight gain early in pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas BA, Ghebremeskel K, Lowy C, Offley-Shore B, Crawford MA. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids. 2005;72(5):335–341.

    Article  CAS  PubMed  Google Scholar 

  2. Wijendran V, Bendel RB, Couch SC, Philipson EH, Cheruku S, Lammi-Keefe CJ. Fetal erythrocyte phospholipid polyunsaturated fatty acids are altered in pregnancy complicated with gestational diabetes mellitus. Lipids. 2000;35(8):927–931.

    Article  CAS  PubMed  Google Scholar 

  3. Pagan A, Prieto-Sanchez MT, Blanco-Carnero JE, et al. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab. 2013;305(7): E826–E833.

    Article  CAS  PubMed  Google Scholar 

  4. Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. PediatrRes. 2008;64(6):615–620.

    CAS  Google Scholar 

  5. Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A. 1986;83(11):4021–4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Connor WE, Neuringer M. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. Prog Clin Biol Res. 1988;282:275-294.

    CAS  PubMed  Google Scholar 

  7. Armitage JA, Pearce AD, Sinclair AJ, Vingrys AJ, Weisinger RS, Weisinger HS. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency. Lipids. 2003;38(4):459–464.

    Article  CAS  PubMed  Google Scholar 

  8. Weisinger HS, Armitage JA, Sinclair AJ, Vingrys AJ, Burns PL, Weisinger RS. Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nat Med. 2001;7(3):258–259.

    Article  CAS  PubMed  Google Scholar 

  9. Sarabi M, Vessby B, Millgard J, Lind L. Endothelium-dependent vasodilation is related to the fatty acid composition of serum lipids in healthy subjects. Atherosclerosis. 2001;156(2):349–355.

    Article  CAS  PubMed  Google Scholar 

  10. Perassolo MS, Almeida JC, Steemburgo T, et al. Endothelial dysfunction and serum fatty acid composition in patients with type 2 diabetes mellitus. Metabolism. 2008;57(9):1167–1172.

    Article  CAS  PubMed  Google Scholar 

  11. Young VM, Toborek M, Yang F, McClain CJ, Hennig B. Effect of linoleic acid on endothelial cell inflammatory mediators. Metabolism. 1998;47(5):566–572.

    Article  CAS  PubMed  Google Scholar 

  12. Al MD, Hornstra G, van de Schouw YT, Bulstra-Ramakers MT, Huisjes HJ. Biochemical EFA status of mothers and their neonates after normal pregnancy. Early Hum Dev. 1990;24(3):239–248.

    Article  CAS  PubMed  Google Scholar 

  13. Al MD, van Houwelingen AC, Kester AD, Hasaart TH, de Jong AE, Hornstra G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr. 1995;74(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  14. Herrera E. Implications of dietary fatty acids during pregnancy on placental, fetal an postnatal development—a review. Placenta. 2002;23 suppl A:S9–S19.

    Article  PubMed  Google Scholar 

  15. Wijendran V, Bendel RB, Couch SC, et al. Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: relations with maternal factors. Am J Clin Nutr. 1999;70(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  16. Stotland NE, Cheng YW, Hopkins LM, Caughey AB. Gestational weight gain and adverse neonatal outcome among term infants. Obstet Gynecol. 2006;108(3 pt 1):635–643.

    Article  PubMed  Google Scholar 

  17. von Kries R, Ensenauer R, Beyerlein A, Amann-Gassner U, Hauner H, Rosario AS. Gestational weight gain and overweight in children: results from the cross-sectional German KiGGS study. Int J Pediatr Obes. 2011;6(1):45–52.

    Article  Google Scholar 

  18. Stuebe AM, Forman MR, Michels KB. Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter. Int J Obes (Lond). 2009;33(7):743–752.

    Article  CAS  Google Scholar 

  19. Oken E, Kleinman KP, Belfort MB, Hammitt JK, Gillman MW. Associations of gestational weight gain with short- and longer-term maternal and child health outcomes. Am J Epidemiol. 2009;170(2):173–180.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Henrichs J, Schenk JJ, Barendregt CS, et al. Fetal growth from mid- to late pregnancy is associated with infant development: the Generation R Study. Dev Med Child Neurol. 2010;52(7):644–651.

    Article  PubMed  Google Scholar 

  21. Medicine Io, Board FN. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, D.C.: National Academies Press (US); 2009.

    Google Scholar 

  22. Lagerstedt SA, Hinrichs DR, Batt SM, Magera MJ, Rinaldo P, McConnell JP. Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol Genet Metab. 2001;73(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  23. Lavoie SM, Harding CO, Gillingham MB. Normal fatty acid concentrations in young children with phenylketonuria (PKU). Top Clin Nutr. 2009;24(4):333–340.

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Tierney-Ginn P, Roberts V, Gillingham M, et al. Influence of high fat diet and resveratrol supplementation on placental fatty acid uptake in the Japanese macaque. Placenta. 2015;36(8):903–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cetin I, Giovannini N, Alvino G, et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res. 2002;52(5):750–755.

    Article  CAS  PubMed  Google Scholar 

  26. Phinney SD, Davis PG, Johnson SB, Holman RT. Obesity and weight loss alter serum polyunsaturated lipids in humans. Am J Clin Nutr. 1991;53(4):831–838.

    Article  CAS  PubMed  Google Scholar 

  27. Zambon S, Romanato G, Sartore G, et al. Bariatric surgery improves atherogenic LDL profile by triglyceride reduction. Obes Surg. 2009;19(2):190–195.

    Article  PubMed  Google Scholar 

  28. Uusitalo U, Arkkola T, Ovaskainen ML, et al. Unhealthy dietary patterns are associated with weight gain during pregnancy among Finnish women. Public Health Nutr. 2009;12(12):2392–2399.

    Article  PubMed  Google Scholar 

  29. Grant WF, Gillingham MB, Batra AK, et al. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS One. 2011;6(2): e17261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22(3):330–335.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rivers JP, Crawford MA. Maternal nutrition and the sex ratio at birth. Nature. 1974;252(5481):297–298.

    Article  CAS  PubMed  Google Scholar 

  32. Crawford MA, Doyle W, Meadows N. Gender differences at birth and differences in fetal growth. Hum Reprod. 1987;2(6):517–520.

    Article  CAS  PubMed  Google Scholar 

  33. O’Tierney-Ginn P, Presley L, Minium J, Hauguel de Mouzon S, Catalano PM. Sex-specific effects of maternal anthropometrics on body composition at birth. Am J Obstet Gynecol. 2014;211(3): 292. e291–e299.

    Article  Google Scholar 

  34. Burton GJ, Jauniaux E. The maternal circulation and placental shape. In: Burton GJ, Barker DJP, Moffet A, Thornburg K, eds. The Placenta and Human Developmental Programming. Cambridge, UK: Cambridge University Press; 2011:161–174.

    Google Scholar 

  35. O’Tierney-Ginn P, Presley L, Myers S, Catalano P. Placental growth response to maternal insulin in early pregnancy. J Clin Endocrinol Metab. 2015;100(1):159–165.

    Article  PubMed  CAS  Google Scholar 

  36. Wallace JM, Aitken RP, Milne JS, Hay W. Jr. Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol Reprod. 2004;71(4):1055–1062.

    Article  CAS  PubMed  Google Scholar 

  37. Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ. 1996;312(7028):410–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyd JD, Hamilton WJ. The Human Placenta, by J.D. Boyd and W.J. Hamilton. Cambridge, England: Heffer; 1970.

    Book  Google Scholar 

  39. Mathai ML, Soueid M, Chen N, et al. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling? Obes Res. 2004;12(11):1886–1894.

    Article  CAS  PubMed  Google Scholar 

  40. Tamimi RM, Lagiou P, Mucci LA, Hsieh CC, Adami HO, Trichopoulos D. Average energy intake among pregnant women carrying a boy compared with a girl. BMJ. 2003;326(7401):1245–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Forsen T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJ. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ. 1997;315(7112):837–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Swanson LD, Bewtra C. Increase in normal placental weights related to increase in maternal body mass index. J Matern Fetal Neonatal Med. 2008;21(2):111–113.

    Article  PubMed  Google Scholar 

  43. Sanin Aguirre LH, Reza-Lopez S, Levario-Carrillo M. Relation between maternal body composition and birth weight. Biol Neo-nate. 2004;86(1):55–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perrie F. O’Tierney-Ginn PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Tierney-Ginn, P.F., Gillingham, M., Fowler, J. et al. Maternal Weight Gain Regulates Omega-3 Fatty Acids in Male, Not Female, Neonates: A Cross-Sectional Study. Reprod. Sci. 24, 560–567 (2017). https://doi.org/10.1177/1933719116660843

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116660843

Keywords

Navigation