Skip to main content
Log in

Effects of Exercise Intervention on Preventing Letrozole-Exposed Rats From Polycystic Ovary Syndrome

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a prevalent endocrinological disorder in reproductive-age women and is often associated with a metabolic syndrome. To investigate whether exercise intervention promotes PCOS prevention, a rat model was used. Polycystic ovary syndrome was induced by letrozole administration, and animals presented with obesity, sex hormone disorder, no ovulation, large cystic follicles, and increasing fasting insulin (FINS) and leptin levels. The intervention was set at 3 different intensities of swimming exercise: low (0.5 h/d), moderate (1 h/d), and high (2 h/d), and compared with a PCOS model group (letrozole administration without exercise intervention) and a control group. The exercise intervention in the low-intensity group did not produce changes in obesity, testosterone, progesterone (P), and follicle-stimulating hormone (FSH) levels. Moderate-intensity exercise reduced body weight, retained ovulation, and P levels were increased but remained lower than those in the control group. The FSH levels were significantly higher, and FINS and leptin levels were lower than in the model group (P < 0.05) but not in the control group. The high-intensity group demonstrated the greatest effect of PCOS prevention. Testosterone, luteinizing hormone, FINS, and leptin levels were significantly lower in the high-intensity group, and FSH and P levels were higher compared with the model group. These results suggest that high-intensity exercise intervention can effectively prevent PCOS development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–551.

    Article  PubMed  Google Scholar 

  2. Munzberg H, Myers MJ. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8(5):566–570.

    Article  PubMed  Google Scholar 

  3. Urbanek M. The genetics of the polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2007;3(2):103–111.

    Article  CAS  PubMed  Google Scholar 

  4. Patterson CM, Bouret SG, Dunn-Meynell AA, Levin BE. Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R537–R548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Escobar-Morreale HF, San MJ. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab. 2007;18(7):266–272.

    Article  CAS  PubMed  Google Scholar 

  6. Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod. 2012;86(5):149, 1–12.

    Article  Google Scholar 

  7. Vazquez MJ, Romero-Ruiz A, Tena-Sempere M. Roles of leptin in reproduction, pregnancy and polycystic ovary syndrome: consensus knowledge and recent developments. Metabolism. 2015;64(1):79–91.

    Article  CAS  PubMed  Google Scholar 

  8. Houjeghani S, Pourghassem GB, Farzadi L. Serum leptin and ghrelin levels in women with polycystic ovary syndrome: correlation with anthropometric, metabolic, and endocrine parameters. Int J Fertil Steril. 2012;6(2):117–126.

    PubMed  PubMed Central  Google Scholar 

  9. Romualdi D, Campagna G, Selvaggi L, Jr et al. Metformin treatment does not affect total leptin levels and free leptin index in obese patients with polycystic ovary syndrome. Fertil Steril. 2008;89(5):1273–1276.

    Article  CAS  PubMed  Google Scholar 

  10. Moran LJ, Brinkworth G, Noakes M, Norman RJ. Effects of lifestyle modification in polycystic ovarian syndrome. Reprod Biomed Online. 2006;12(5):569–578.

    Article  PubMed  Google Scholar 

  11. Badawy A, Elnashar A. Treatment options for polycystic ovary syndrome. Int J Womens Health. 2011;3:25–35.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565–4592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moran LJ, Hutchison SK, Norman RJ, Teede HJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011;(7):D7506.

    Google Scholar 

  14. Panidis D, Tziomalos K, Papadakis E, Vosnakis C, Chatzis P, Katsikis I. Lifestyle intervention and anti-obesity therapies in the polycystic ovary syndrome: impact on metabolism and fertility. Endocrine. 2013;44(3):583–590.

    Article  CAS  PubMed  Google Scholar 

  15. Miri M, Karimi JH, Alipour F. Effect of exercise intensity on weight changes and sexual hormones (androstenedione and free testosterone) in female rats with estradiol valerate-induced PCOS. J Ovarian Res. 2014;7(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thomson RL, Buckley JD, Brinkworth GD. Exercise for the treatment and management of overweight women with polycystic ovary syndrome: a review of the literature. Obes Rev. 2011;12(5):e202–e210.

    Article  CAS  PubMed  Google Scholar 

  17. Maliqueo M, Benrick A, Stener-Victorin E. Rodent models of polycystic ovary syndrome: phenotypic presentation, pathophysiology, and the effects of different interventions. Semin Reprod Med. 2014;32(3):183–193.

    Article  PubMed  Google Scholar 

  18. Padmanabhan V, Veiga-Lopez A. Animal models of the polycystic ovary syndrome phenotype. Steroids. 2013;78(8):734–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kafali H, Iriadam M, Ozardali I, Demir N. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 2004;35(2):103–108.

    Article  CAS  PubMed  Google Scholar 

  20. Cui LL, Chen ZJ. Diagnosis criteria and guidelines for the diagnosis and treatment of PCOS. J Int Reprod Health/Fam Plan. 2011;30(5):405–408.

    CAS  Google Scholar 

  21. Ma RJ, Zhou J, Fang JQ, Yang DH, Qu F. Combination of acupuncture and Chinese medicinal herbs in treating model rats with polycystic ovary syndrome. Afr J Tradit Complement Altern Med. 2011;8(4):353–361.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jia LT, Liu YL, Ma BJ, et al. Comparison of two kinds of polycystic ovary syndrome rat models. J Zhengzhou Univ (Med Sci). 2011;46(4):538–542.

    CAS  Google Scholar 

  23. Jiang LY, Wu MM, Cao SF. Expression of brain-derived neurotrophic factor and its receptor TrkB in ovarian tissues of polycystic ovary syndrome rats. Reprod Contrac. 2015;35(9):593–600.

    CAS  Google Scholar 

  24. Maliqueo M, Sun M, Johansson J, et al. Continuous administration of a P450 aromatase inhibitor induces polycystic ovary syndrome with a metabolic and endocrine phenotype in female rats at adult age. Endocrinology. 2013;154(1):434–445.

    Article  CAS  PubMed  Google Scholar 

  25. Loffler S, Aust G, Kohler U, Spanel-Borowski K. Evidence of leptin expression in normal and polycystic human ovaries. Mol Hum Reprod. 2001;7(12):1143–1149.

    Article  CAS  PubMed  Google Scholar 

  26. Johansson J, Feng Y, Shao R, Lonn M, Billig H, Stener-Victorin E. Intense electroacupuncture normalizes insulin sensitivity, increases muscle GLUT4 content, and improves lipid profile in a rat model of polycystic ovary syndrome. Am J Physiol Endocrinol Metab. 2010;299(4):E551–E559.

    Article  CAS  PubMed  Google Scholar 

  27. Yanes LL, Romero DG, Moulana M, et al. Cardiovascular-renal and metabolic characterization of a rat model of polycystic ovary syndrome. Gender Med. 2011;8(2):103–115.

    Article  Google Scholar 

  28. The REAP. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47.

    Article  Google Scholar 

  29. Azziz R, Carmina E, Dewailly D, et al. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456–488.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yan Jiang PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, SF., Hu, WL., Wu, MM. et al. Effects of Exercise Intervention on Preventing Letrozole-Exposed Rats From Polycystic Ovary Syndrome. Reprod. Sci. 24, 456–462 (2017). https://doi.org/10.1177/1933719116657892

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116657892

Keywords

Navigation