Skip to main content

The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy

Abstract

The hormone relaxin is a 6-kDa peptide with high structural similarity to insulin. It is primarily produced by the corpus luteum during pregnancy but is also synthesized by other reproductive organs such as the uterus, decidua, and placenta. Relaxin binds to its receptor RXFP1, which has been localized to a wide variety of reproductive and nonreproductive tissues. The peptide’s many uterotropic effects include stimulating uterine growth and vascularization, remodeling extracellular matrix components, and regulating vascular endothelial growth factor in preparation for implantation. Evidence also supports a role for relaxin in the systemic maternal vascular adaptations required for a healthy pregnancy. Diminished relaxin levels in early pregnancy are linked with increased risks of miscarriage and the development of preeclampsia. In addition to pregnancy, relaxin may also play a functional role in the uterus during the menstrual cycle, and modified relaxin activity may contribute to gynecological disorders such as uterine fibrosis and endometriosis. Despite over 75 years of research, we still have a limited understanding of relaxin’s broad roles in the uterus, particularly as there are significant species differences in its synthesis and activity, which restricts the use of animal models for human-centric questions. Here, we review current knowledge regarding relaxin actions in the human uterus during the menstrual cycle and in early pregnancy, with a focus on its potential roles in various gynecological disorders, as well as the pregnancy disorders such as preeclampsia, recurrent miscarriage, and early pregnancy loss.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Exp Biol Med. 1926;23(8):661–663.

    Google Scholar 

  2. 2.

    Fevold HL, Hisaw FL, Meyer RK. The relaxative hormone of the corpus luteum. Its purification and concentration. J Am Chem Soc. 1930;52(8):3340–3348.

    CAS  Google Scholar 

  3. 3.

    Sherwood CD. The physiology of reproduction. In: Knobil E, Neill JD, Greenwald GS, Market CL, Pfaff DW, eds. Relaxin. New York, NY: Raven Press; 1994:861–1009.

  4. 4.

    Gast MJ. Studies of luteal generation and processing of the high molecular weight relaxin precursor. Ann N Y Acad Sci. 1982;380(1):111–125.

    CAS  PubMed  Google Scholar 

  5. 5.

    Gast MJ. Characterization of preprorelaxin by tryptic digestion and inhibition of its conversion to prorelaxin by amino acid analogs. J Biol Chem. 1983;258(14):9001–9004.

    CAS  PubMed  Google Scholar 

  6. 6.

    Schwabe C, McDonald JK, Steinetz BG. Primary structure of the A chain of porcine relaxin. Biochem Bioph Res Co. 1976;70(2):397–405.

    CAS  Google Scholar 

  7. 7.

    Schwabe C, McDonald JK, Steinetz BG. Primary structure of the B-chain of porcine relaxin. Biochem Bioph Res Co. 1977;75(2):503–510.

    CAS  Google Scholar 

  8. 8.

    Büllesbach EE, Yang S, Schwabe C. The receptor-binding site of human relaxin II. A dual prong-binding mechanism. J Biol Chem. 1992;267(32):22957–22960.

    PubMed  Google Scholar 

  9. 9.

    Wilkinson TN, Speed TP, Tregear GW, Bathgate RAD. Evolution of the relaxin-like peptide family. BMC Evol Biol. 2005;5:14.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bathgate RAD, Samuel CS, Burazin TCD, et al. Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide family. J Biol Chem. 2002;277(2):1148–1157.

    CAS  PubMed  Google Scholar 

  11. 11.

    Banerjee A, Shen PJ, Ma S, Bathgate RAD, Gundlach AL. Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology. 2010;58(1):145–155.

    CAS  PubMed  Google Scholar 

  12. 12.

    McGowan B, Stanley SA, Smith KL, White NE, et al. Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology. 2005;146(8):3295–3300.

    CAS  PubMed  Google Scholar 

  13. 13.

    Crawford RJ, Hudson P, Shine J, Niall HD, Eddy RL, Shows TB. Two human relaxin genes are on chromosome 9. EMBO J. 1984;3(10):2341–2345.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hoffmann FG, Opazo JC. Evolution of the relaxin/insulin-like gene family in placental mammals: implications for its early evolution. J Mol Evol. 2011;72(1):72–79.

    CAS  PubMed  Google Scholar 

  15. 15.

    Evans BA, Fu P, Tregear GW. Characterization of two relaxin genes in the chimpanzee. J Endocrinol. 1994;140(3):385–392.

    CAS  PubMed  Google Scholar 

  16. 16.

    Gunnersen JM, Fu P, Roche PJ, Tregear GW. Expression of human relaxin genes: characterization of a novel alternatively-spliced human relaxin mRNA species. Mol Cell Endocrinol. 1996;118(1-2):85–94.

    CAS  PubMed  Google Scholar 

  17. 17.

    Hudson P, John M, Crawford R, et al. Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J. 1984;3(10):2333–2339.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Halls ML, Bathgate RA, Sutton SW, Dschietzig TB, Summers RJ. International union of basic and clinical pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev. 2015;67(2):389–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Scott DJ, Layfield S, Yan Y, et al. Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J Biol Chem. 2006;281(46):34942–34954.

    CAS  PubMed  Google Scholar 

  20. 20.

    Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006;58(1):7–31.

    CAS  PubMed  Google Scholar 

  21. 21.

    Liu C, Chen J, Sutton S, et al. Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem. 2003;278(50):50765–50770.

    CAS  PubMed  Google Scholar 

  22. 22.

    Liu C, Eriste E, Sutton S, et al. Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem. 2003;278(50):50754–50764.

    CAS  PubMed  Google Scholar 

  23. 23.

    Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013;93(1):405–480.

    CAS  PubMed  Google Scholar 

  24. 24.

    Sherwood OD, Crnekovic VE, Gordon WL, Rutherford JE. Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology. 1980;107(3):691–698.

    CAS  PubMed  Google Scholar 

  25. 25.

    Eldridge-White R, Easter RA, Heaton DM, et al. Hormonal control of the cervix in pregnant gilts. I. Changes in the physical properties of the cervix correlate temporally with elevated serum levels of estrogen and relaxin. Endocrinology. 1989;125(6):2996–3003.

    CAS  PubMed  Google Scholar 

  26. 26.

    Eddie LW, Bell RJ, Lester A, et al. Radioimmunoassay of relaxin in pregnancy with an analogue of human relaxin. Lancet. 1986;1(8494):1344–1346.

    CAS  PubMed  Google Scholar 

  27. 27.

    Bell RJ, Eddie LW, Lester AR, Wood EC, Johnston PD, Niall HD. Relaxin in human pregnancy serum measured with an homologous radioimmunoassay. Obstet Gynecol. 1987;69(4):585–589.

    CAS  PubMed  Google Scholar 

  28. 28.

    Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–234.

    CAS  PubMed  Google Scholar 

  29. 29.

    Stewart DR, Celniker AC, Taylor CA, et al. Relaxin in the peri-implantation period. J Clin Endocr Metab. 1990;70(6):1771–1773.

    CAS  PubMed  Google Scholar 

  30. 30.

    Goldsmith LT, Weiss G, Palejwala S, et al. Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci U S A. 2004;101(13):4685–4689.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Goldsmith LT, Weiss G. Relaxin regulates endometrial structure and function in the rhesus monkey. Ann N Y Acad Sci. 2005;1041:110–117.

    CAS  PubMed  Google Scholar 

  32. 32.

    Hisaw FL, Hisaw FL, Jr Dawson AB. Effects of relaxin on the endothelium of endometrial blood vessels in monkeys (Macaca mulatta). Endocrinology. 1967;81(2):375–385.

    CAS  PubMed  Google Scholar 

  33. 33.

    Weiss G, Palejwala S, Tseng L, Goldsmith L. Synthesis and function of relaxin in human endometrium. In: Tregear G, Ivell R, Bathgate R, Wade J, eds. Relaxin 2000. Dordrecht, The Netherlands: Springer; 2001:41–45.

    Google Scholar 

  34. 34.

    Hayes ES. Biology of primate relaxin: a paracrine signal in early pregnancy? Reprod Biol Endocrinol. 2004;2:36.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Anumba DOC, El Gelany S, Elliott SL, Li TC. Serum relaxin levels are reduced in pregnant women with a history of recurrent miscarriage, and correlate with maternal uterine artery Doppler indices in first trimester. Eur J Obstet Gyn Reprod Biol. 2009;147(1):41–45.

    CAS  Google Scholar 

  36. 36.

    Jeyabalan A, Stewart DR, McGonigal SC, Powers RW, Conrad KP. Low relaxin concentrations in the first trimester are associated with increased risk of developing preeclampsia [abstract]. Reprod Sci. 2009;16(3 Suppl):101A.

    Google Scholar 

  37. 37.

    Uiterweer EDP, Koster MP, Jeyabalan A, et al. First trimester serum relaxin concentration and prediction of early and late onset preeclampsia [abstract]. Reprod Sci. 2014;21(3 Suppl): 181A.

    Google Scholar 

  38. 38.

    Anand-Ivell R, Ivell R. Regulation of the reproductive cycle and early pregnancy by relaxin family peptides. Mol Cell Endocrinol. 2014;382(1):472–479.

    CAS  PubMed  Google Scholar 

  39. 39.

    Blankenship T, Stewart DR, Benirschke K, King B, Lasley BL. Immunocytochemical localization of nonluteal ovarian relaxin. J Reprod Med. 1994;39(4):235–240.

    CAS  PubMed  Google Scholar 

  40. 40.

    Wathes DC, Wardle PG, Rees JM, et al. Identification of relaxin immunoreactivity in human follicular fluid. Hum Reprod. 1986;1(8):515–517.

    CAS  PubMed  Google Scholar 

  41. 41.

    Maseelall PB, Seungdamrong A, Weiss G, et al. Expression of LGR7 in the primate corpus luteum implicates the corpus luteum as a relaxin target organ. Ann N Y Acad Sci. 2009;1160:147–151.

    CAS  PubMed  Google Scholar 

  42. 42.

    Feugang JM, Greene JM, Willard ST, Ryan PL. In vitro effects of relaxin on gene expression in porcine cumulus-oocyte complexes and developing embryos. Reprod Biol Endocrinol. 2011;9:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Shirota K, Tateishi K, Koji T, et al. Early human preantral follicles have relaxin and relaxin receptor (LGR7), and relaxin promotes their development. J Clin Endocr Metab. 2005;90(1):516–521.

    CAS  PubMed  Google Scholar 

  44. 44.

    Stewart DR, Cragun JR, Boyers SP, Oi R, Overstreet JW, Lasley BL. Serum relaxin concentrations in patients with out-of-phase endometrial biopsies. Fertil Steril. 1992;57(2):453–455.

    CAS  PubMed  Google Scholar 

  45. 45.

    Eddie LW, Martinez F, Healy DL, Sutton B, Bell RJ, Tregear GW. Relaxin in sera during the luteal phase of in-vitro fertilization cycles. Br J Obstet Gynaecol. 1990;97(3):215–220.

    CAS  PubMed  Google Scholar 

  46. 46.

    Stewart DR, Erikson MS, Erikson ME, et al. The role of relaxin in glycodelin secretion. J Clin Endocr Metab. 1997;82(3):839–846.

    CAS  PubMed  Google Scholar 

  47. 47.

    Wreje U, Kristiansson P, Aberg H, Bystrom B, von Schoultz B. Serum levels of relaxin during the menstrual cycle and oral contraceptive use. Gynecol Obstet Invest. 1995;39(3):197–200.

    CAS  PubMed  Google Scholar 

  48. 48.

    Pehrsson M, Westberg L, Landen M, Ekman A. Stable serum levels of relaxin throughout the menstrual cycle: a preliminary comparison of women with premenstrual dysphoria and controls. Arch Womens Ment Health. 2007;10(4):147–153.

    CAS  PubMed  Google Scholar 

  49. 49.

    O’Byrne EM, Steinetz BG. Radioimmunoassay (RIA) of relaxin in sera of various species using an antiserum to porcine relaxin. Proc Soc Exp Biol Med. 1976;152(2):272–276.

    PubMed  Google Scholar 

  50. 50.

    Ivell R, Kotula-Balak M, Glynn D, Heng K, Anand-Ivell R. Relaxin family peptides in the male reproductive system - a critical appraisal. Mol Hum Reprod. 2011;17(2):71–84.

    CAS  PubMed  Google Scholar 

  51. 51.

    Bond CP, Parry LJ, Samuel CS, et al. Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. J Clin Endocr Metab. 2004;89(7):3477–3485.

    CAS  PubMed  Google Scholar 

  52. 52.

    Morelli SS, Petraglia F, Weiss G, et al. Endometrial expression of relaxin and relaxin receptor in endometriosis. Fertil Steril. 2010;94(7):2885–2887.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Palejwala S, Tseng L, Wojtczuk A, Weiss G, Goldsmith LT. Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod. 2002;66(6):1743–1748.

    CAS  PubMed  Google Scholar 

  54. 54.

    Bryant-Greenwood GD, Rutanen EM, Partanen S, Coelho TK, Yamamoto SY. Sequential appearance of relaxin, prolactin and IGFBP-1 during growth and differentiation of the human endometrium. Mol Cell Endocrinol. 1993;95(1-2):23–29.

    CAS  PubMed  Google Scholar 

  55. 55.

    Campitiello MR, De Franciscis P, Mele D, et al. Endometrial LGR7 expression during menstrual cycle. Fertil Steril. 2011;95(8):2511–2514.

    CAS  PubMed  Google Scholar 

  56. 56.

    Krusche CA, Kroll T, Beier HM, Classen-Linke I. Expression of leucine-rich repeat-containing G-protein-coupled receptors in the human cyclic endometrium. Fertil Steril. 2007;87(6):1428–1437.

    CAS  PubMed  Google Scholar 

  57. 57.

    Luna JJ, Riesewijk A, Horcajadas JA, et al. Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle. Mol Hum Reprod. 2004;10(2):85–90.

    CAS  PubMed  Google Scholar 

  58. 58.

    Ivell R, Balvers M, Pohnke Y, et al. Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol. 2003;1:114.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Mazella J, Tang M, Tseng L. Disparate effects of relaxin and TGFβ1: relaxin increases, but TGFβ1 inhibits, the relaxin receptor and the production of IGFBP-1 in human endometrial stromal/decidual cells. Hum Reprod. 2004;19(7):1513–1518.

    CAS  PubMed  Google Scholar 

  60. 60.

    Heng K, Ivell R, Wagaarachchi P, Anand-Ivell R. Relaxin signalling in primary cultures of human myometrial cells. Mol Hum Reprod. 2008;14(10):603–611.

    CAS  PubMed  Google Scholar 

  61. 61.

    Einspanier A, Lieder K, Husen B, et al. Relaxin supports implantation and early pregnancy in the marmoset monkey. Ann N Y Acad Sci. 2009;1160:140–146.

    CAS  PubMed  Google Scholar 

  62. 62.

    Bond CP, Parry LJ, Samuel CS, et al. Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. Ann N Y Acad Sci. 2005;1041:136–143.

    CAS  PubMed  Google Scholar 

  63. 63.

    Einspanier A, Müller D, Lubberstedt J, et al. Characterization of relaxin binding in the uterus of the marmoset monkey. Mol Hum Reprod. 2001;7(10):963–970.

    CAS  PubMed  Google Scholar 

  64. 64.

    Sakbun V, Ali SM, Greenwood FC, Bryant-Greenwood GD. Human relaxin in the amnion, chorion, decidua parietalis, basal plate, and placental trophoblast by immunocytochemistry and northern analysis. J Clin Endocr Metab. 1990;70(2):508–514.

    CAS  PubMed  Google Scholar 

  65. 65.

    Fields PA, Larkin LH. Purification and immunohistochemical localization of relaxin in the human term placenta. J Clin Endocr Metab. 1981;52(1):79–85.

    CAS  PubMed  Google Scholar 

  66. 66.

    Yamamoto S, Kwok SC, Greenwood FC, Bryant-Greenwood GD. Relaxin purification from human placental basal plates. J Clin Endocr Metab. 1981;52(4):601–604.

    CAS  PubMed  Google Scholar 

  67. 67.

    Unemori EN, Lewis M, Constant J, et al. Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen. 2000;8(5):361–370.

    CAS  PubMed  Google Scholar 

  68. 68.

    Conrad KP, Shroff SG. Effects of relaxin on arterial dilation, remodeling, and mechanical properties. Curr Hypertens Rep. 2011;13(6):409–420.

    CAS  PubMed  Google Scholar 

  69. 69.

    Dehghan F, Haerian BS, Muniandy S, Yusof A, Dragoo JL, Salleh N. The effect of relaxin on the musculoskeletal system. Scand J Med Sci Sports. 2014;24(4):e220–e229.

    CAS  PubMed  Google Scholar 

  70. 70.

    Conrad KP, Jeyabalan A, Danielson LA, Kerchner LJ, Novak J. Role of relaxin in maternal renal vasodilation of pregnancy. Ann N Y Acad Sci. 2005;1041(1):147–154.

    CAS  PubMed  Google Scholar 

  71. 71.

    Conrad KP, Novak J. Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol. 2004;287(2):R250–R261.

    CAS  PubMed  Google Scholar 

  72. 72.

    Samuel CS. Relaxin: antifibrotic properties and effects in models of disease. Clin Med Res. 2005;3(4):241–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Samuel CS, Du XJ, Bathgate RAD, Summers RJ. ‘Relaxin’ the stiffened heart and arteries: the therapeutic potential for relaxin in the treatment of cardiovascular disease. Pharmacol Ther. 2006;112(2):529–552.

    CAS  PubMed  Google Scholar 

  74. 74.

    Mu X, Urso ML, Murray K, Fu F, Li Y. Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am J Pathol. 2010;177(5):2399–2410.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Seibold JR, Korn JH, Simms R, et al. Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2000;132(11):871–879.

    CAS  PubMed  Google Scholar 

  76. 76.

    Unemori EN, Erikson ME, Rocco SE, et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum Reprod. 1999;14(3):800–806.

    CAS  PubMed  Google Scholar 

  77. 77.

    Parry LJ, Vodstrcil LA. Relaxin physiology in the female reproductive tract during pregnancy. In: Agoulnik A, ed. Relaxin and Related Peptides. New York, NY: Springer; 2007:34–48.

    Google Scholar 

  78. 78.

    Anand-Ivell R, Dai Y, Ivell R. Neohormones as biomarkers of reproductive health. Fertil Steril. 2013;99(4):1153–1160.

    CAS  PubMed  Google Scholar 

  79. 79.

    Ferlin A, Menegazzo M, Gianesello L, Selice R, Foresta C. Effect of relaxin on human sperm functions. J Androl. 2012;33(3):474–482.

    CAS  PubMed  Google Scholar 

  80. 80.

    Bagnell CA, Bartol FF. Milk-borne relaxin and reproductive system development. Ital J Anat Embryol. 2013;118(1 suppl):15–16.

    PubMed  Google Scholar 

  81. 81.

    Bartol FF, Bagnell CA. Lactocrine programming of female reproductive tract development: environmental connections to the reproductive continuum. Mol Cell Endocrinol. 2012;354(1-2):16–21.

    CAS  PubMed  Google Scholar 

  82. 82.

    Eddie LW, Sutton B, Fitzgerald S, Bell RJ, Johnston PD, Tregear GW. Relaxin in paired samples of serum and milk from women after term and preterm delivery. Am J Obstet Gynecol. 1989;161(4):970–973.

    CAS  PubMed  Google Scholar 

  83. 83.

    Tashima LS, Mazoujian G, Bryant-Greenwood GD. Human relaxins in normal, benign and neoplastic breast tissue. J Mol Endocrinol. 1994;12(3):351–364.

    CAS  PubMed  Google Scholar 

  84. 84.

    Mazoujian G, Bryant-Greenwood GD. Relaxin in breast tissue. Lancet. 1990;335(8684):298–299.

    CAS  PubMed  Google Scholar 

  85. 85.

    Plaisier M. Decidualisation and angiogenesis. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):259–271.

    PubMed  Google Scholar 

  86. 86.

    VandeVoort CA, Mtango NR, Latham KE, Stewart DR. Primate preimplantation embryo is a target for relaxin during early pregnancy. Fertil Steril. 2011;96(1):203–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    MacLennan AH, Grant P. Human relaxin. In vitro response of human and pig myometrium. J Reprod Med. 1991;36(9):630–634.

    CAS  PubMed  Google Scholar 

  88. 88.

    MacLennan AH, Grant P, Ness D, Down A. Effect of porcine relaxin and progesterone on rat, pig and human myometrial activity in vitro. J Reprod Med. 1986;31(1):43–49.

    CAS  PubMed  Google Scholar 

  89. 89.

    Longo M, Jain V, Vedernikov YP, Garfield RE, Saade GR. Effects of recombinant human relaxin on pregnant rat uterine artery and myometrium in vitro. Am J Obstet Gynecol. 2003;188(6):1468–1476.

    CAS  PubMed  Google Scholar 

  90. 90.

    Girling JE, Rogers PAW. Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin-TIE signalling system. Reproduction. 2009;138(6):883–893.

    CAS  PubMed  Google Scholar 

  91. 91.

    Unemori EN, Amento EP. Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J Biol Chem. 1990;265(18):10681–10685.

    CAS  PubMed  Google Scholar 

  92. 92.

    Hansell DJ, Bryant-Greenwood GD, Greenwood FC. Expression of the human relaxin H1 gene in the decidua, trophoblast, and prostate. J Clin Endocrinol Metab. 1991;72(4):899–904.

    CAS  PubMed  Google Scholar 

  93. 93.

    Bartsch O, Bartlick B, Ivell R. Phosphodiesterase 4 inhibition synergizes with relaxin signaling to promote decidualization of human endometrial stromal cells. J Clin Endocrinol Metab. 2004;89(1):324–334.

    CAS  PubMed  Google Scholar 

  94. 94.

    Telgmann R, Gellersen B. Marker genes of decidualization: activation of the decidual prolactin gene. Hum Reprod Update. 1998;4(5):472–479.

    CAS  PubMed  Google Scholar 

  95. 95.

    Tseng L, Gao JG, Chen R, Zhu HH, Mazella J, Powell DR. Effect of progestin, antiprogestin, and relaxin on the accumulation of prolactin and insulin-like growth factor-binding protein-1 messenger ribonucleic acid in human endometrial stromal cells. Biol Reprod. 1992;47(3):441–450.

    CAS  PubMed  Google Scholar 

  96. 96.

    Goldsmith LT, Weiss G. Relaxin in human pregnancy. Ann N Y Acad Sci. 2009;1160:130–135.

    CAS  PubMed  Google Scholar 

  97. 97.

    Bani G, Maurizi M, Bigazzi M, Bani Sacchi T. Effects of relaxin on the endometrial stroma. Studies in mice. Biol Reprod. 1995;53(2):253–262.

    CAS  PubMed  Google Scholar 

  98. 98.

    Bethea CL, Cronin MJ, Haluska GJ, Novy MJ. The effect of relaxin infusion on prolactin and growth-hormone secretion in monkeys. J Clin Endocrinol Metab. 1989;69(5):956–962.

    CAS  PubMed  Google Scholar 

  99. 99.

    Tang M, Mazella J, Hui Zhu H, Tseng L. Ligand activated relaxin receptor increases the transcription of IGFBP-1 and prolactin in human decidual and endometrial stromal cells. Mol Hum Reprod. 2005;11(4):237–243.

    PubMed  Google Scholar 

  100. 100.

    Hui HZ, Jun RH, Mazella J, Rosenberg M, Tseng L. Differential-effects of progestin and relaxin on the synthesis and secretion of immunoreactive prolactin in long-term culture of human endometrial stromal cells. J Clin Endocrinol Metab. 1990;71(4):889–899.

    Google Scholar 

  101. 101.

    Dimitriadis E, Stoikos C, Baca M, Fairlie WD, McCoubrie JE, Salamonsen LA. Relaxin and prostaglandin E2 regulate interleukin 11 during human endometrial stromal cell decidualization. J Clin Endocrinol Metab. 2005;90(6):3458–3465.

    CAS  PubMed  Google Scholar 

  102. 102.

    Dimitriadis E, Robb L, Salamonsen LA. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol Hum Reprod. 2002;8(7):636–643.

    CAS  PubMed  Google Scholar 

  103. 103.

    Sibai BM, Frangieh A. Maternal adaptation to pregnancy. Curr Opin Obstet Gynecol. 1995;7(6):420–426.

    CAS  PubMed  Google Scholar 

  104. 104.

    Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol. 2014;306(10):F1121–F1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Novak J, Danielson LA, Kerchner LJ, et al. Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J Clin Invest. 2001;107(11):1469–1475.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Poppas A, Shroff SG, Korcarz CE, et al. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation. 1997;95(10):2407–2415.

    CAS  PubMed  Google Scholar 

  107. 107.

    Gokina N, Mandala M, Osol G. Induction of localized differences in rat uterine radial artery behavior and structure during gestation. Am J Obstet Gynecol. 2003;189(5):1489–1493.

    PubMed  Google Scholar 

  108. 108.

    Chapman AB, Zamudio S, Woodmansee W, et al. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am J Physiol Renal Physiol. 1997;273(5 pt 2):F777–F782.

    CAS  Google Scholar 

  109. 109.

    Smith MC, Murdoch AP, Danielson LA, Conrad KP, Davison JM. Relaxin has a role in establishing a renal response in pregnancy. Fertil Steril. 2006;86(1):253–255.

    CAS  PubMed  Google Scholar 

  110. 110.

    Conrad KP, Debrah DO, Novak J, Danielson LA, Shroff SG. Relaxin modifies systemic arterial resistance and compliance in conscious, nonpregnant rats. Endocrinology. 2004;145(7):3289–3296.

    CAS  PubMed  Google Scholar 

  111. 111.

    Danielson LA, Sherwood OD, Conrad KP. Relaxin is a potent renal vasodilator in conscious rats. J Clin Invest. 1999;103(4):525–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Vodstrcil LA, Tare M, Novak J, et al. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J. 2012;26(10):4035–4044.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Debrah DO, Novak J, Matthews JE, Ramirez RJ, Shroff SG, Conrad KP. Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats. Endocrinology. 2006;147(11):5126–5131.

    CAS  PubMed  Google Scholar 

  114. 114.

    Gooi JH, Richardson ML, Jelinic M, et al. Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol Reprod. 2013;89(1):1–11.

    Google Scholar 

  115. 115.

    Jelinic M, Leo CH, Uiterweer EDP, et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 2014;28(1):275–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    van Drongelen J, van Koppen A, Pertijs J, et al. Impaired vascular responses to relaxin in diet-induced overweight female rats. J Appl Physiol. 2012;112(3):962–969.

    PubMed  Google Scholar 

  117. 117.

    Novak J, Parry LJ, Matthews JE, et al. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 2006;20(13):2352–2352.

    CAS  PubMed  Google Scholar 

  118. 118.

    Weiss G, Teichman S, Stewart D, Nader D, Wood S, Unemori E. A randomized, double-blind, placebo-controlled trial of relaxin for cervical ripening in post-delivery date pregnancies. Ann N Y Acad Sci. 2009;1160(1):385–386.

    CAS  PubMed  Google Scholar 

  119. 119.

    Bain E, Heatley E, Hsu K, Crowther CA. Relaxin for preventing preterm birth. Cochrane Database Syst Rev. 2013;16(8):CD010073.

    Google Scholar 

  120. 120.

    Bryant-Greenwood GD, Kern A, Yamamoto SY, Sadowsky DW, Novy MJ. Relaxin and the human fetal membranes. Reprod Sci. 2007;14(8 suppl):42–45.

    CAS  PubMed  Google Scholar 

  121. 121.

    Bryant-Greenwood GD, Millar LK. Human fetal membranes: their preterm premature rupture. Biol Reprod. 2000;63(6):1575–1579.

    CAS  PubMed  Google Scholar 

  122. 122.

    Lowndes K, Amano A, Yamamoto SY, Bryant-Greenwood GD. The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta. 2006;27(6-7):610–618.

    CAS  PubMed  Google Scholar 

  123. 123.

    Vogel I, Glavind-Kristensen M, Thorsen P, Armbruster FP, Uldbjerg N. S-relaxin as a predictor of preterm delivery in women with symptoms of preterm labour. BJOG. 2002;109(9):977–982.

    CAS  PubMed  Google Scholar 

  124. 124.

    Vogel I, Goepfert AR, Moller HJ, Cliver S, Thorsen P, Andrews WW. Early mid-trimester serum relaxin, soluble CD163, and cervical length in women at high risk for preterm delivery. Am J Obstet Gynecol. 2006;195(1):208–214.

    CAS  PubMed  Google Scholar 

  125. 125.

    Rocha FG, Slavin TP, Li D, Tiirikainen MI, Bryant-Greenwood GD. Genetic associations of relaxin: preterm birth and premature rupture of fetal membranes. Am J Obstet Gynecol. 2013;209(3):10.

    Google Scholar 

  126. 126.

    Vogel I, Hollegaard MV, Hougaard DM, Thorsen P, Grove J. Polymorphisms in the promoter region of relaxin-2 and preterm birth: involvement of relaxin in the etiology of preterm birth. In Vivo. 2009;23(6):1005–1009.

    PubMed  Google Scholar 

  127. 127.

    Munro MG, Critchley HO, Fraser IS. The FIGO systems for nomenclature and classification of causes of abnormal uterine bleeding in the reproductive years: who needs them? Am J Obstet Gynecol. 2012;207(4):259–265.

    PubMed  Google Scholar 

  128. 128.

    Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100–107.

    PubMed  Google Scholar 

  129. 129.

    Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344–1355.

    CAS  PubMed  Google Scholar 

  130. 130.

    MacLennan AH, Grant P, Borthwick AC. Relaxin and relaxin c-peptide levels in human reproductive tissues. Reprod Fertil Dev. 1991;3(5):577–583.

    CAS  PubMed  Google Scholar 

  131. 131.

    Li Z, Burzawa JK, Troung A, et al. Relaxin signaling in uterine fibroids. Ann N Y Acad Sci. 2009;1160:374–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Suzuki K, Nakabayashi K, Yamada AY, et al. Recombinant H2 relaxin inhibits apoptosis and induces cell proliferation in cultured leiomyoma cells without affecting those in cultured normal myometrial cells. Fertil Steril. 2012;97(3):734–741.

    CAS  PubMed  Google Scholar 

  133. 133.

    Burney RO. The genetics and biochemistry of endometriosis. Curr Opin Obstet Gynecol. 2013;25(4):280–286.

    PubMed  Google Scholar 

  134. 134.

    Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Morelli SS, Petraglia F, Weiss G, Luisi S, Florio P, Goldsmith LT. Relaxin in endometriosis. Ann N Y Acad Sci. 2009;1160:138–139.

    PubMed  Google Scholar 

  136. 136.

    Nair VB, Samuel CS, Separovic F, Hossain MA, Wade JD. Human relaxin-2: historical perspectives and role in cancer biology. Amino Acids. 2012;43(3):1131–1140.

    CAS  PubMed  Google Scholar 

  137. 137.

    Cernaro V, Lacquaniti A, Lupica R, et al. Relaxin: new pathophysiological aspects and pharmacological perspectives for an old protein. Med Res Rev. 2014;34(1):77–105.

    CAS  PubMed  Google Scholar 

  138. 138.

    Rho YS, Min G. Relaxin does not influence the growth of human cervical adenocarcinoma (HeLa) cells in culture. Ann N Y Acad Sci. 2005;1041:470–480.

    CAS  PubMed  Google Scholar 

  139. 139.

    Yki-Jarvinen H, Wahlstrom T, Seppala M. Immunohistochemical demonstration of relaxin in gynecologic tumors. Cancer. 1983;52(11):2077–2080.

    CAS  PubMed  Google Scholar 

  140. 140.

    Seki K, Uesato T, Kato K. Serum relaxin in patients with invasive mole, choriocarcinoma and persistent trophoblastic disease. Endocrinol Jpn. 1986;33(5):727–733.

    CAS  PubMed  Google Scholar 

  141. 141.

    Seki K, Uesato T, Tabei T, Kato K. Serum relaxin in patients with hydatidiform mole. Obstet Gynecol. 1986;67(3):381–383.

    CAS  PubMed  Google Scholar 

  142. 142.

    Kamat AA, Feng S, Agoulnik IU, et al. The role of relaxin in endometrial cancer. Cancer Biol Ther. 2006;5(1):71–77.

    CAS  PubMed  Google Scholar 

  143. 143.

    Thorell E, Goldsmith L, Weiss G, Kristiansson P. Physical fitness, serum relaxin and duration of gestation. BMC Pregnancy Childbirth. 2015;15:168.

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Petersen LK, Vogel I, Agger AO, Westergård J, Nils M, Uldbjerg N. Variations in serum relaxin (hRLX-2) concentrations during human pregnancy. Acta Obstet Gynecol Scand. 1995;74(4):251–256.

    CAS  PubMed  Google Scholar 

  145. 145.

    Seki K, Uesato T, Tabei T, Kato K. Serum relaxin and steroid hormones in spontaneous abortions. Acta Obstet Gynecol Scand. 1988;67(6):483–486.

    CAS  PubMed  Google Scholar 

  146. 146.

    Stewart DR, Overstreet JW, Celniker AC, et al. The relationship between hCG and relaxin secretion in normal pregnancies vs peri-implantation spontaneous abortions. Clin Endocrinol. 1993;38(4):379–385.

    CAS  Google Scholar 

  147. 147.

    Vuorela P, Carpén O, Tulppala M, Halmesmäki E. VEGF, its receptors and the tie receptors in recurrent miscarriage. Mol Hum Reprod. 2000;6(3):276–282.

    CAS  PubMed  Google Scholar 

  148. 148.

    Jauniaux E, Jurkovic D, Campbell S. In vivo investigations of the anatomy and the physiology of early human placental circulations. Ultrasound Obstet Gynecol. 1991;1(6):435–445.

    CAS  PubMed  Google Scholar 

  149. 149.

    Schulman H, Fleischer A, Farmakides G, Bracero L, Rochelson B, Grunfeld L. Development of uterine artery compliance in pregnancy as detected by Doppler ultrasound. Am J Obstet Gynecol. 1986;155(5):1031–1036.

    CAS  PubMed  Google Scholar 

  150. 150.

    Jurkovic D, Jauniaux E, Campbell S. Doppler ultrasound investigations of pelvic circulation during the menstrual cycle and early pregnancy. In: Barnea ER, Hustin J, Jauniaux E, eds. The First Twelve Weeks of Gestation. Berlin/Heidelberg, Germany: Springer; 1992:78–96.

    Google Scholar 

  151. 151.

    Jauniaux E, Johnson MR, Jurkovic D, Ramsay B, Campbell S, Meuris S. The role of relaxin in the development of the uteroplacental circulation in early pregnancy. Obstet Gynecol. 1994;84(3):338–342.

    CAS  PubMed  Google Scholar 

  152. 152.

    Ball E, Bulmer JN, Ayis S, Lyall F, Robson SC. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;208(4):535–542.

    CAS  PubMed  Google Scholar 

  153. 153.

    Kutluer G, Çiçek NM, Moraloğlu Ö, et al. Low VEGF expression in conceptus material and maternal serum AFP and ß-hCG levels as indicators of defective angiogenesis in first-trimester miscarriages. J Turk Ger Gynecol Assoc. 2012;13(2):111–117.

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. The Lancet. 2015;387(10022):999–1011.

    Google Scholar 

  155. 155.

    Lee G, Tubby J. Preeclampsia and the risk of cardiovascular disease later in life - a review of the evidence. Midwifery. 2015;31(12):1127–1134.

    PubMed  Google Scholar 

  156. 156.

    Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med. 2015;21(2):88–97.

    CAS  PubMed  Google Scholar 

  157. 157.

    Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011;31(1):33–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Zhou Y, McMaster M, Woo K, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol. 2002;160(4):1405–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Marshall SA, Leo CH, Senadheera SN, Girling JE, Tare M, Parry LJ. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am J Physiol Regul Integr Comp Physiol. 2016;310(9):R847–R857.

    PubMed  Google Scholar 

  160. 160.

    Novak J, Reckelhoff J, Bumgarner L, Cockrell K, Kassab S, Granger JP. Reduced sensitivity of the renal circulation to angiotensin II in pregnant rats. Hypertension. 1997;30(3):580–584.

    CAS  PubMed  Google Scholar 

  161. 161.

    Johnson MR, Abdalla H, Allman AC, Wren ME, Kirkland A, Lightman SL. Relaxin levels in ovum donation pregnancies. Fertil Steril. 1991;56(1):59–61.

    CAS  PubMed  Google Scholar 

  162. 162.

    Szlachter BN, Quagliarello J, Jewelewicz R, Osathanondh R, Spellacy WN, Weiss G. Relaxin in normal and pathogenic pregnancies. Obstet Gynecol. 1982;59(2):167–170.

    CAS  PubMed  Google Scholar 

  163. 163.

    Lafayette RA, Hladunewich MA, Derby G, Blouch K, Druzin ML, Myers BD. Serum relaxin levels and kidney function in late pregnancy with or without preeclampsia. Clin Nephrol. 2011;75(3):226–232.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jane E. Girling BSc(Hons), PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marshall, S.A., Senadheera, S.N., Parry, L.J. et al. The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy. Reprod. Sci. 24, 342–354 (2017). https://doi.org/10.1177/1933719116657189

Download citation

Keywords

  • relaxin
  • menstrual cycle
  • pregnancy
  • uterus