Skip to main content

Advertisement

Log in

The Regulation of Fatty Acid Oxidation in Human Preeclampsia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a pregnancy disorder characterized by high blood pressure, placental oxidative stress, and proteinuria. In a GeneFishing experiment using human preeclamptic placenta, expression of acyl-coenzyme A dehydrogenase very long chain (ACADVL), which is involved in fatty acid b-oxidation (FAO), was detected. To investigate the correlation between PE and FAO, this study subjected in vitro BeWo cells and in vivo pregnant mice to oxidative stress induced by hypoxia. Hypoxic condition, which oxygen supply is insufficient in cells and placenta, created a similar state to placental oxidative stress in PE, as evidenced by increased hypoxic (oxoguanine DNA glycosylase I, hypoxia inducible factor I alpha subunit) and preeclamptic markers (soluble fms-like tyrosine kinase I) both in vitro and in vivo. Increased expression of FAO-related genes (ACADVL, enoyl-coenzyme A hydratase/3-hydroxyacyl coenzyme A dehydrogenase) was observed in these models as well as in cases of preeclamptic preterm labor. In the in vivo liver model, messenger RNA expression of gluconeogenesis-related genes increased. Consequently, these results suggest that expression of FAO-related genes is regulated by hypoxic conditions and onset time of PE and affects maternal gluconeogenesis during pregnancy in patients with PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sibai, B, Dekker, G, Kupferminc, M Pre-eclampsia. Lancet. 2005; 365(9461):785–799.

    PubMed  Google Scholar 

  2. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183(1):S1–S22.

    Google Scholar 

  3. Ness, RB, Roberts, JM Heterogeneous causes constituting the sin-gle syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996;175(5):1365–1370.

    CAS  PubMed  Google Scholar 

  4. Sibai, BM Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol. 2003;102(1):181–192.

    PubMed  Google Scholar 

  5. Roberts, JM Preeclampsia: what we know and what we do not know. Semin Perinatol. 2000;24(1):24–28.

    CAS  PubMed  Google Scholar 

  6. Liou, JD, Pao, CC, Hor, JJ, Kao, SM Fetal cells in the maternal circulation during first trimester in pregnancies. Hum Genet. 1993;92(3):309–311.

    CAS  PubMed  Google Scholar 

  7. Wataganara, T, Chen, AY, LeShane, ES, et al. Cell-free fetal DNA levels in maternal plasma after elective first-trimester termination of pregnancy. Fertil Steril. 2004;81(3):638–644.

    CAS  PubMed  Google Scholar 

  8. Vatten, LJ, Skjaerven, R Is pre-eclampsia more than one disease? BJOG. 2004;111(4):298–302.

    PubMed  Google Scholar 

  9. Caniggia, I, Winter, J, Lye, SJ, Post, M Oxygen and placental development during the first trimester: implications for the patho-physiology of pre-eclampsia. Placenta. 2000;21(suppl A): S25–S230.

    PubMed  Google Scholar 

  10. Genbacev, O, Joslin, R, Damsky, CH, Polliotti, BM, Fisher, SJ Hypoxia alters early gestation human cytotrophoblast differentia-tion/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97(2):540–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hung, TH, Charnock-Jones, DS, Skepper, JN, Burton, GJ Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol. 2004;164(3):1049–1061.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zamudio, S, Palmer, SK, Dahms, TE, et al. Blood volume expan-sion, preeclampsia, and infant birth weight at high altitude. J Appl Physiol. 1993;75(4):1566–1573.

    CAS  PubMed  Google Scholar 

  13. Benyo, DF, Smarason, A, Redman, CW, Sims, C, Conrad, KP Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab. 2001;86(6): 2505–2512.

    CAS  PubMed  Google Scholar 

  14. Redman, CW, Sargent, IL Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21(7):597–602.

    CAS  PubMed  Google Scholar 

  15. Sargent, IL, Germain, SJ, Sacks, GP, Kumar, S, Redman, CW Tro-phoblast deportation and the maternal inflammatory response in pre-eclampsia. J Reprod Immunol. 2003;59(2):153–160.

    CAS  PubMed  Google Scholar 

  16. Gratacos, E, Casals, E, Deulofeu, R, Cararach, V, Alonso, PL, Fortuny, A Lipid peroxide and vitamin E patterns in pregnant women with different types of hypertension in pregnancy. Am J Obstet Gynecol. 1998;178(5):1072–1076.

    CAS  PubMed  Google Scholar 

  17. Mutlu-Turkoglu, U, Ademoglu, E, Ibrahimoglu, L, Aykac-Toker, G, Uysal, M Imbalance between lipid peroxidation and antioxidant status in preeclampsia. Gynecol Obstet Invest. 1998;46(1):37–40.

    CAS  PubMed  Google Scholar 

  18. Uotila, JT, Tuimala, RJ, Aarnio, TM, Pyykko, KA, Ahotupa, MO Findings on lipid peroxidation and antioxidant function in hyper-tensive complications of pregnancy. Br J Obstet Gynaecol. 1993; 100(3):270–276.

    CAS  PubMed  Google Scholar 

  19. Felig, P, Wahren, J Fuel homeostasis in exercise. N Engl J Med. 1975;293(21):1078–1084.

    CAS  PubMed  Google Scholar 

  20. Neely, JR, Morgan, HE Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–459.

    CAS  PubMed  Google Scholar 

  21. Dunning, KR, Cashman, K, Russell, DL, Thompson, JG, Norman, RJ, Robker, RL Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83(6):909–918.

    CAS  PubMed  Google Scholar 

  22. Herrera, E, Amusquivar, E Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev. 2000;16(3):202–210.

    CAS  PubMed  Google Scholar 

  23. Yang, H, Kim, TH, An, BS, et al. Differential expression of calcium transport channels in placenta primary cells and tissues derived from preeclamptic placenta. Mol Cell Endocrinol. 2013;367(1-2): 21–30.

    CAS  PubMed  Google Scholar 

  24. Yang, H, Kim, TH, Lee, GS, Hong, EJ, Jeung, EB Comparing the expression patterns of placental magnesium/phosphorus-transporting channels between healthy and preeclamptic pregnancies. Mol Reprod Dev. 2014;81(9):851–860.

    CAS  PubMed  Google Scholar 

  25. von Dadelszen, P, Magee, LA, Roberts, JM Subclassification of preeclampsia. Hypertens Pregnancy. 2003;22(2):143–148.

    Google Scholar 

  26. von Dadelszen, P, Magee, LA, Devarakonda, RM, et al. The pre-diction of adverse maternal outcomes in preeclampsia. J Obstet Gynaecol Can. 2004;26(10):871–879.

    Google Scholar 

  27. Jadoon, A, Cunningham, P, McDermott, LC Regulation of fatty acid binding proteins by hypoxia inducible factors 1alpha and 2alpha in the placenta: relevance to pre-eclampsia. Prostaglan-dins Leukot Essent Fatty Acids. 2015;93:25–29.

    CAS  Google Scholar 

  28. Lai, Z, Kalkunte, S, Sharma, S A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57(3):505–514.

    CAS  PubMed  Google Scholar 

  29. Yang, H, An, BS, Choi, KC, Jeung, EB Change of genes in calcium transport channels caused by hypoxic stress in the placenta, duo-denum, and kidney of pregnant rats. Biol Reprod. 2013;88(2):30.

    PubMed  Google Scholar 

  30. Caldecott, KW XRCC1 and DNA strand break repair. DNA Repair. 2003;2(9):955–969.

    CAS  PubMed  Google Scholar 

  31. Mustafa, SA, Karieb, SS, Davies, SJ, Jha, AN Assessment of oxi-dative damage to DNA, transcriptional expression of key genes, lipid peroxidation and histopathological changes in carp Cyprinus carpio L following exposure to chronic hypoxic and subsequent recovery in normoxic conditions. Mutagenesis. 2015;30(1): 107–116.

    CAS  PubMed  Google Scholar 

  32. Maynard, SE, Min, JY, Merchan, J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shibuya, M Structure and function of VEGF/VEGF-receptor sys-tem involved in angiogenesis. Cell Struct Funct. 2001;26(1): 25–35.

    CAS  PubMed  Google Scholar 

  34. Zhou, Y, McMaster, M, Woo, K, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol. 2002;160(4):1405–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pae, EK, Ahuja, B, Kim, M, Kim, G Impaired glucose homeostasis after a transient intermittent hypoxic exposure in neonatal rats. Biochem Biophys Res Commun. 2013;441(3):637–642.

    CAS  PubMed  Google Scholar 

  36. Rui, L Energy metabolism in the liver. Compr Physiol. 2014;4(1): 177–197.

    PubMed  PubMed Central  Google Scholar 

  37. Shenoy, V, Kanasaki, K, Kalluri, R Pre-eclampsia: connecting angiogenic and metabolic pathways. Trends Endocrinol Metab. 2010;21(9):529–536.

    CAS  PubMed  Google Scholar 

  38. Vuorela, P, Helske, S, Hornig, C, Alitalo, K, Weich, H, Halmes-maki, E Amniotic fluid–soluble vascular endothelial growth factor receptor-1 in preeclampsia. Obstet Gynecol. 2000;95(3): 353–357.

    CAS  PubMed  Google Scholar 

  39. Redman, CW Current topic: pre-eclampsia and the placenta. Pla-centa. 1991;12(4):301–308.

    CAS  Google Scholar 

  40. Jaffe, R, Dorgan, A, Abramowicz, JS Color Doppler imaging of the uteroplacental circulation in the first trimester: value in predicting pregnancy failure or complication. Am J Roentgenol. 1995; 164(5):1255–1258.

    CAS  Google Scholar 

  41. Schneider, H Oxygenation of the placental-fetal unit in humans. Respir Physiol Neurobiol. 2011;178(1):51–58.

    PubMed  Google Scholar 

  42. Murray, AJ Oxygen delivery and fetal-placental growth: beyond a question of supply and demand? Placenta. 2012;33(suppl 2): e16–e22.

    PubMed  Google Scholar 

  43. Herrera, EA, Krause, B, Ebensperger, G, et al. The placental pursuit for an adequate oxidant balance between the mother and the fetus. Front Pharmacol. 2014;5:149.

    PubMed  PubMed Central  Google Scholar 

  44. Wang, GL, Jiang, BH, Rue, EA, Semenza, GL Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92(12): 5510–5514.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivan, M, Haberberger, T, Gervasi, DC, et al. Biochemical purifica-tion and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci U S A 2002;99(21):13459–13464.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ito, K, Suda, T Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4): 243–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shekhawat, P, Bennett, MJ, Sadovsky, Y, Nelson, DM, Rakheja, D, Strauss, AW Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases. Am J Physiol Endocrinol Metab. 2003;284(6): E1098–E1105.

    CAS  PubMed  Google Scholar 

  48. Rakheja, D, Bennett, MJ, Foster, BM, Domiati- Saad, R, Rogers, BB Evidence for fatty acid oxidation in human placenta, and the relationship of fatty acid oxidation enzyme activities with gesta-tional age. Placenta. 2002;23(5):447–450.

    CAS  PubMed  Google Scholar 

  49. Oey, NA, Ruiter, JP, Attie-Bitach, T, Ijlst, L, Wanders, RJ, Wijburg, FA Fatty acid oxidation in the human fetus: implications for fetal and adult disease. J Inherit Metab Dis. 2006;29(1): 71–75.

    CAS  PubMed  Google Scholar 

  50. Eaton, S Control of mitochondrial beta-oxidation flux. Prog Lipid Res. 2002;41(3):197–239.

    CAS  PubMed  Google Scholar 

  51. She, P, Shiota, M, Shelton, KD, Chalkley, R, Postic, C, Magnuson, MA Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol. 2000; 20(17):6508–6517.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Emerson K Jr, Saxena, BN, Poindexter, EL Caloric cost of normal pregnancy. Obstet Gynecol. 1972;40(6):786–794.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Bae Jeung DVM, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, EK., Kang, H.Y., Yang, H. et al. The Regulation of Fatty Acid Oxidation in Human Preeclampsia. Reprod. Sci. 23, 1422–1433 (2016). https://doi.org/10.1177/1933719116641759

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116641759

Keywords

Navigation