Skip to main content

Advertisement

Log in

Inhibition of Wnt Inhibitory Factor I Under Hypoxic Condition in Human Umbilical Vein Endothelial Cells Promoted Angiogenesis in Vitro

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Placentation is a complicated process critical for maternal–fetal exchange of nutrients and gases that includes stepwise vasculogenesis and angiogenesis. Wnt inhibitory factor I (WIFI) is a secreted Wnt antagonist that acts as a tumor-suppressor gene by antagonizing angiogenesis and proliferation and inducing apoptosis. The purpose of this study was to investigate the function of WIFI on placental angiogenesis in human umbilical vein endothelial cells (HUVECs) under hypoxic conditions. We found that WIFI was diversely expressed in placental vascular endothelial cells at different points during gestation and was weaker in the early placenta than in the term placenta. We validated the antiangiogenesis role of WIFI by inhibiting proliferation, tube formation and migration, and inducing apoptosis of endothelial cells through antagonizing Wnt/β-catenin signaling pathway. We also identified that hypoxic conditions similar to the early placenta inhibited the expression of WIFI and reversed the antiangiogenesis of WIFI in HUVECs. In conclusion, our present study supported the hypothesis that WIFI is crucial as a negative regulator of the functions of endothelial cells in angiogenesis and that hypoxia plays an important role in controlling WIFI expression and angiogenesis. We also demonstrated that Wnt/β-catenin signaling pathway was activated in correspondence with the suppression of WIFI in the angiogenesis of endothelial cells under hypoxic conditions. Keywords hypoxia, angiogenesis, Wnt inhibitory factor I, human umbilical vein endothelial cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Demir, R, Kayisli, UA, Cayli, S, Huppertz, B Sequential steps during vasculogenesis and angiogenesis in the very early human placenta. Placenta. 2006;27(6-7):535–539.

    Article  Google Scholar 

  2. Kemp, B, Kertschanska, S, Kadyrov, M, Rath, W, Kaufmann, P, Huppertz, B Invasive depth of extravillous trophoblast correlates with cellular phenotype: a comparison of intra- and extrauterine implantation sites. Histochem Cell Biol. 2002;117(5):401–414.

    Article  CAS  PubMed  Google Scholar 

  3. Cartwright, JE, Fraser, R, Leslie, K, Wallace, AE, James, JL Remo-delling at the maternal-fetal interface: relevance to human preg-nancy disorders. Reproduction. 2010;140(6):803–813.

    Article  CAS  PubMed  Google Scholar 

  4. Pijnenborg, R, Bland, JM, Robertson, WB, Brosens, I Uteroplacen-tal arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983;4(4):397–413.

    Article  CAS  PubMed  Google Scholar 

  5. Burton, GJ, Woods, AW, Jauniaux, E, Kingdom, JC Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human preg-nancy. Placenta. 2009;30(6):473–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aplin, JD, Haigh, T, Jones, CJ, Church, HJ, ViĆovac, L Develop-ment of cytotrophoblast columns from explanted first-trimester human placental villi: role of fibronectin and integrin alpha5-beta1. Biol Reprod. 1999;60(4):828–838.

    Article  CAS  PubMed  Google Scholar 

  7. Knöfler, M, Pollheimer, J IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta. 2012;33 suppl:s55–s62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cartwright, JE, Tse, WK, Whitley, GS Hepatocyte growth factor induced human trophoblast motility involves phosphatidylinositol-3-kinase, mitogen-activated protein kinase, and inducible nitric oxide synthase. Exp Cell Res. 2002;279(2):219–226.

    Article  CAS  PubMed  Google Scholar 

  9. Godbole, G, Suman, P, Gupta, SK, Modi, D Decidualized endome-trial stromal cell derived factors promote trophoblast invasion. Fertil Steril. 2011;95(4):1278–1283.

    Article  CAS  PubMed  Google Scholar 

  10. James, JL, Stone, PR, Chamley, LW The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update. 2006;12(2):137–144.

    Article  CAS  PubMed  Google Scholar 

  11. Zimna, A, Kurpisz, M Hypoxia-Inducible Factor-1 in Physiologi-cal and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int. 2015;2015:549412.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goldberg, MA, Schneider, TJ Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994;269(6):4355–4359.

    Article  CAS  PubMed  Google Scholar 

  13. Thurston, G, Rudge, JS, Ioffe, E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000;6(4): 460–463.

    Article  CAS  PubMed  Google Scholar 

  14. Gleadle, JM, Ebert, BL, Firth, JD, Ratcliffe, PJ Regulation of angio-genic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol. 1995;268(6 pt 1):c1362–c1368.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y, Cox, SR, Morita, T, Kourembanas, S Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’enhancer. Circ Res. 1995;77(3):638–643.

    Article  CAS  PubMed  Google Scholar 

  16. Clevers, H Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–480.

    Article  CAS  PubMed  Google Scholar 

  17. Angers, S, Moon, RT Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468–477.

    Article  CAS  PubMed  Google Scholar 

  18. Skurk, C, Maatz, H, Rocnik, E, Bialik, A, Force, T, Walsh, K Glycogen-Synthase Kinase 3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res. 2005;96(3):308–318.

    Article  CAS  PubMed  Google Scholar 

  19. Cattelino, A, Liebner, S, Gallini, R, et al. The conditional inactiva-tion of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol. 2003;162(6):1111–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wright, M, Aikawa, M, Szeto, W, Papkoff, J Identification of a Wnt-responsive signal transduction pathway in primary endothe-lial cells. Biochem Biophys Res Commun. 1999;263(2):384–388.

    Article  CAS  PubMed  Google Scholar 

  21. Klein, D, Demory, A, Peyre, F, et al. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothe-lial cells cross-stimulating the VEGF pathway. Hepatology. 2008; 47(3):1018–1031.

    Article  CAS  PubMed  Google Scholar 

  22. Lobov, IB, Rao, S, Carroll, TJ, et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature. 2005;437(7057):417–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeays-Ward, K, Hoyle, C, Brennan, J, et al. Endothelial and ster-oidogenic cell migration are regulated by WNT4 in the devel-oping mammalian gonad. Development. 2003;130(16): 3663–3670.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, DH, Yoon, JY, Lee, SH, et al. Wnt5a is required for endothe-lial differentiation of embryonic stem cells and vascularization via pathways involving both Wnt/beta-catenin and protein kinase Calpha. Circ Res. 2009;104(3):372–379.

    Article  CAS  PubMed  Google Scholar 

  25. Duplàa, C, Jaspard, B, Moreau, C, D’Amore, PA Identification and cloning of a secreted protein related to the cysteine-rich domain of frizzled. Evidence for a role in endothelial cell growth control. Circ Res. 1999;84(12):1433–1445.

    Article  PubMed  Google Scholar 

  26. Taniguchi, H, Yamamoto, H, Hirata, T, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene. 2005;24(53):7946–7952.

    Article  CAS  PubMed  Google Scholar 

  27. Hu, J, Dong, A, Fernandez-Ruiz, V, et al. Blockade of Wnt signal-ing inhibits angiogenesis and tumor growth in hepatocellular car-cinoma. Cancer Res. 2009;69(17):6951–6959.

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandran, I, Thavathiru, E, Ramalingam, S, et al. Wnt inhi-bitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene. 2012; 31(22):2725–2737.

    Article  CAS  PubMed  Google Scholar 

  29. Fang, Y, Yu, S, Ma, Y, et al. Association of Dll4/notch and HIF-1a -VEGF signaling in the angiogenesis of missed abortion. PLoS One. 2013;8(8):e70667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacDonald, BT, Tamai, K, He, X Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1): 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bányai, L, Kerekes, K, Patthy, L Characterization of a Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1. FEBS Lett. 2012;586(19):3122–3126.

    Article  PubMed  Google Scholar 

  32. Ko, YB, Kim, BR, Yoon, K, et al. WIF1 can effectively co-regulate pro-apoptotic activity through the combination with DKK1. Cell Signal. 2014;26(11):2562–2572.

    Article  CAS  PubMed  Google Scholar 

  33. Kühl, M, Sheldahl, LC, Park, M, Miller, JR, Moon, RT The Wnt/ Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000;16(7):279–283.

    Article  PubMed  Google Scholar 

  34. Mikels, AJ, Nusse, R Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4(4):e115.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Masckauchán, TN, Agalliu, D, Vorontchikhina, M, et al. Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell. 2006; 17(12):5163–5172.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sonderegger, S, Husslein, H, Leisser, C, Knö fler, M Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta. 2007;28(suppl a): s97–s102.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Majmundar, AJ, Lee, DS, Skuli, N, et al. HIF modulation of Wnt signaling regulates skeletal myogenesis in vivo. Development. 2015;142(14):2405–2412.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Santoyo-Ramos, P, Likhatcheva, M, GarĆia-Zepeda, EA, Castañeda-Patlán, MC, Robles-Flores, M Hypoxia-inducible factors modulate the stemness and malignancy of colon cancer cells by playing opposite roles in canonical Wnt signaling. PLoS One. 2014;9(11):e112580.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tang, Y, Simoneau, AR, Liao, WX, et al. WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther. 2009;8(2):458–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lang, I, Pabst, MA, Hiden, U, et al. Heterogeneity of microvascular endothelial cells isolated from human term placenta and macro-vascular umbilical vein endothelial cells. Eur J Cell Biol. 2003; 82(4):163–173.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Y., Deng, Q. et al. Inhibition of Wnt Inhibitory Factor I Under Hypoxic Condition in Human Umbilical Vein Endothelial Cells Promoted Angiogenesis in Vitro. Reprod. Sci. 23, 1348–1358 (2016). https://doi.org/10.1177/1933719116638174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116638174

Keywords

Navigation