Skip to main content
Log in

Altered Maternal Plasma Glycogen Phosphorylase Isoenzyme BB as a Biomarker for Preeclampsia and Small for Gestational Age

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objectives

To investigate whether maternal plasma glycogen phosphorylase BB (GPBB) levels were altered in early pregnancy and/or at the time of diagnosis of disease in preeclampsia (term and preterm <37 weeks’ gestation) or small for gestational age (SGA).

Methods

We conducted 6 nested case–control studies within the Screening of Pregnancy Endpoint (SCOPE) Ireland cohort. Blood samples from women with preeclampsia or SGA were analyzed both from the time of disease presentation and at 15 and 20 weeks’ gestation. These were compared with control samples obtained from SCOPE women with healthy uncomplicated pregnancies matched for age, ethnicity, parity, body mass index, and gestational age. Glycogen phosphorylase BB levels were measured using the Diacordon GPBB enzyme-linked immunosorbent assay (Diagenics, Germany).

Results

Glycogen phosphorylase BB levels were higher in women with preeclampsia compared with controls at the time of disease (term preeclampsia median [interquartile range (IQR)]: 22.2 [15.1-39.8] ng/mL vs 16.9 [10.4-19.1] ng/mL; P = .04; N = 14 and preterm preeclampsia median [IQR]: 23.1 [11.2-30.9] ng/mL vs 17.2 [9.8-19.1] ng/mL; P = .04; N = 11) and at 20 weeks’ gestation (median [IQR]: 23.0 [15.6-31.4] ng/mL vs 17.0 [13.4-23.6] ng/mL; N = 39; P = .04). Glycogen phosphorylase BB levels were also significantly higher in women with SGA compared with normal controls at the time of disease detection (median [IQR]: 22.7 [12.6-25.5] ng/mL vs 17.0 [9.8-18.0] ng/mL; N = 23; P = .03) but significantly less than controls at 15 weeks’ gestation prior to disease detection (median [IQR]: 16.0 [12.1-23.2] ng/mL vs 22.2 [17.0-28.9] ng/mL; N = 25; P = .02).

Conclusion

Glycogen phosphorylase BB alone has modest predictive abilities for the development of preeclampsia or SGA. Further research may examine its use in combination with other markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apple FS, Wu AH, Mair J, et al. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem. 2005;51(5):810–824.

    CAS  PubMed  Google Scholar 

  2. Kato K, Shimizu A, Kurobe N, Takashi M, Koshikawa T. Human brain-type glycogen phosphorylase: quantitative localization in human tissues determined with an immunoassay system. J Neurochem. 1989;52(5):1425–1432.

    CAS  PubMed  Google Scholar 

  3. Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B. Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Mol Cell Biochem. 1996; 160–161:289–295.

  4. Newgard CB, Hwang PK, Fletterick RJ. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99.

    CAS  PubMed  Google Scholar 

  5. Peetz D, Post F, Schinzel H, et al. Glycogen phosphorylase BB in acute coronary syndromes. Clin Chem Lab Med. 2005;43(12): 1351–1358.

    CAS  PubMed  Google Scholar 

  6. Lippi G, Mattiuzzi C, Comelli I, Cervellin G. Glycogen phosphorylase isoenzyme BB in the diagnosis of acute myocardial infarction: a meta-analysis. Biochem Med (Zagreb). 2013; 23(1):78–82.

    CAS  Google Scholar 

  7. Rabitzsch G, Mair J, Lechleitner P, et al. Isoenzyme BB of glycogen phosphorylase b and myocardial infarction. Lancet. 1993; 341(8851):1032–1033.

    CAS  PubMed  Google Scholar 

  8. Cubranic Z, Madzar Z, Matijevic S, et al. Diagnostic accuracy of heart fatty acid binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) in diagnosis of acute myocardial infarction in patients with acute coronary syndrome. Biochem Med (Zagreb). 2012;22(2):225–236.

    CAS  Google Scholar 

  9. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4 pt 2):h1060–h1065.

    CAS  PubMed  Google Scholar 

  10. Gilbert JS, Ryan MJ, LaMarca BB, et al. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294(2):h541–h550.

    CAS  PubMed  Google Scholar 

  11. Kanasaki K, Kalluri R. The biology of preeclampsia. Kidney Int. 2009;76(8):831–837.

    PubMed  PubMed Central  Google Scholar 

  12. LaMarca B, Wallace K, Herse F, et al. Hypertension in response to placental ischemia during pregnancy: role of B lymphocytes. Hypertension. 2011;57(4):865–871.

    CAS  PubMed  Google Scholar 

  13. Gagnon R. Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol. 2003;110(suppl 1):s99–s107.

    PubMed  Google Scholar 

  14. Burton GJ, Jauniaux E, Watson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181(3):718–724.

    CAS  PubMed  Google Scholar 

  15. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science. 1997;277(5332):1669–1672.

    CAS  PubMed  Google Scholar 

  16. Huppertz B, Peeters LL. Vascular biology in implantation and placentation. Angiogenesis. 2005;8(2):157–167.

    PubMed  Google Scholar 

  17. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005; 365(9461):785–799.

    PubMed  Google Scholar 

  18. Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of preeclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):391–403.

    PubMed  Google Scholar 

  19. Kenny L, Baker PN. Maternal pathophysiology in pre-eclampsia. Baillieres Best Pract Res Clin Obstet Gynaecol. 1999;13(1):59–75.

    CAS  PubMed  Google Scholar 

  20. Robb AO, Mills NL, Din JN, et al. Influence of the menstrual cycle, pregnancy, and preeclampsia on arterial stiffness. Hypertension. 2009;53(6):952–958.

    CAS  PubMed  Google Scholar 

  21. Craici I, Wagner S, Garovic VD. Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008;2(4):249–259.

    PubMed  Google Scholar 

  22. Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359(8):800–809.

    CAS  PubMed  Google Scholar 

  23. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    PubMed  PubMed Central  Google Scholar 

  24. Kenny LC, Black MA, Poston L, et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) International Cohort Study. Hypertension. 2014; 64(3):644–652.

    CAS  PubMed  Google Scholar 

  25. Lee J, Romero R, Dong Z, et al. Glycogen phosphorylase isoenzyme BB plasma concentration is elevated in pregnancy and preterm preeclampsia. Hypertension. 2012;59(2):274–282.

    CAS  PubMed  Google Scholar 

  26. North RA, McCowan LM, Dekker GA, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ. 2011;342:d1875.

    PubMed  PubMed Central  Google Scholar 

  27. McCarthy FP, O’Keeffe LM, Khashan AS, et al. Association between maternal alcohol consumption in early pregnancy and pregnancy outcomes. Obstet Gynecol. 2013;122(4):830–837.

    CAS  PubMed  Google Scholar 

  28. McCarthy FP, Khashan AS, North RA, et al. Pregnancy loss managed by cervical dilatation and curettage increases the risk of spontaneous preterm birth. Hum Reprod. 2013;28(12):3197–3206.

    PubMed  Google Scholar 

  29. McCowan L, North R, Taylor R. Screening nulliparous women to identify the combinations of clinical risk factors and/or biomarkers required to predict preeclampsia, small for gestational age babies and spontaneous preterm birth. ACTRN12607000551493. Australian New Zealand Clinical Trials Registry: The University of Sydney. 2007. Web site. http://www.anzctr.org.au/trial_view.aspx?ID=82254. Accessed November 4, 2015.

  30. McCowan LM, Dekker GA, Chan E, et al. Spontaneous preterm birth and small for gestational age infants in women who stop smoking early in pregnancy: prospective cohort study. BMJ. 2009;338:b1081.

    PubMed  PubMed Central  Google Scholar 

  31. Brown MA, Hague WM, Higgins J, et al. The detection, investigation and management of hypertension in pregnancy: executive summary. Aust N Z J Obstet Gynaecol. 2000;40(2):133–138.

    CAS  PubMed  Google Scholar 

  32. Gardosi J, Francis A. Customised Centile Calculator-GROW 6.12 Bulk. Gestation Network; 2007. Web site. http://www.gestation.net/birthweight_centiles/birthweight_centiles.htm.

  33. McCowan LM, Thompson JM, Taylor RS, et al. Clinical prediction in early pregnancy of infants small for gestational age by customised birthweight centiles: findings from a healthy nulliparous cohort. PloS One. 2013;8(8):e70917.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans DJ, Murray R, Kissebah AH. Relationship between skeletal muscle insulin resistance, insulin-mediated glucose disposal, and insulin binding. Effects of obesity and body fat topography. J Clin Invest. 1984;74(4):1515–1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Laviola L, Perrini S, Belsanti G, et al. Intrauterine growth restriction in humans is associated with abnormalities in placental insulin-like growth factor signaling. Endocrinology. 2005; 146(3):1498–1505.

    CAS  PubMed  Google Scholar 

  36. Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. Epigenetics: intrauterine growth retardation (IUGR) modifies the his-tone code along the rat hepatic IGF-1 gene. FASEB J. 2009; 23(8):2438–2449.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hiden U, Glitzner E, Hartmann M, Desoye G. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat. 2009;215(1):60–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thorn SR, Regnault TR, Brown LD, et al. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology. 2009;150(7):3021–3030.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Limesand SW, Rozance PJ, Smith D, Hay WW Jr. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab. 2007;293(6):e1716–e1725.

    CAS  PubMed  Google Scholar 

  40. Lin YS, Tang CH, Yang CY, et al. Effect of pre-eclampsia-eclampsia on major cardiovascular events among peripartum women in Taiwan. Am J Cardiol. 2011;107(2):325–330.

    PubMed  Google Scholar 

  41. Chappell LC, Duckworth S, Seed PT, et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation. 2013;128(19):2121–2131.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergus P. McCarthy PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, F.P., Doyle, A., Khashan, A.S. et al. Altered Maternal Plasma Glycogen Phosphorylase Isoenzyme BB as a Biomarker for Preeclampsia and Small for Gestational Age. Reprod. Sci. 23, 738–747 (2016). https://doi.org/10.1177/1933719115616495

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115616495

Keywords

Navigation