Skip to main content

Advertisement

Log in

Follicle-Stimulating Hormone: A Review of Form and Function in the Treatment of Infertility

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The use of gonadotropin therapy, including follicle-stimulating hormone (FSH), represents an indispensable part of fertility treatment. There are a number of FSH preparations commercially available or in development, including both urinary-derived products (urinary-derived FSH [uFSH]) and FSH produced through recombinant techniques (recombinant FSH [rFSH]). Differences in the glycosylation patterns of FSH give rise to a number of naturally occurring isoforms that may differ functionally. The relative concentrations of these isoforms vary over the course of the menstrual cycle and the lifetime, indicating that these differences in glycosylation may have physiologic relevance. Although both uFSH and rFSH contain human FSH, there are differences in the glycosylation patterns, which may give rise to differences in biologic activity between products. Current FSH products have been shown to have high purity and to exhibit consistent, favorable efficacy and safety profiles for the treatment of infertility, regardless of urinary or recombinant origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Practice Committee of the American Society for Reproductive Medicine. Progesterone supplementation during the luteal phase and in early pregnancy in the treatment of infertility: an educational bulletin. Fertil Steril. 2008;89(4):789–792.

    Google Scholar 

  2. Amer S. Gonadotropin induction of ovulation. Obstet Gynaecol Reprod Med. 2007;17(7):205–210.

    Google Scholar 

  3. Leao RB, Esteves SC. Gonadotropin therapy in assisted reproduction: an evolutionary perspective from biologics to biotech. Clinics (Sao Paulo). 2014;69(4):279–293.

    Google Scholar 

  4. Practice Committee of American Society for Reproductive Medicine, Birmingham, Alabama. Gonadotropin preparations: past, present, and future perspectives. Fertil Steril. 2008;90(5 suppl): S13–S20.

    Google Scholar 

  5. Arey BJ, Lopez FJ. Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic therapeutic implications. Rev Endocr Metab Disord. 2011;12(4):275–288.

    CAS  PubMed  Google Scholar 

  6. Choi J, Smitz J. Luteinizing hormone and human chorionic gonadotropin: distinguishing unique physiologic roles. Gynecol Endocrinol. 2014;30(3):174–181.

    CAS  PubMed  Google Scholar 

  7. Choi J, Smitz J. Luteinizing hormone and human chorionic gonadotropin: origins of difference. Mol Cell Endocrinol. 2014;383(1– 2):203–213.

    CAS  PubMed  Google Scholar 

  8. Schipper I, Hop WC, Fauser BC. The follicle-stimulating hormone (FSH) threshold/window concept examined by different interventions with exogenous FSH during the follicular phase of the normal menstrual cycle: duration, rather than magnitude, of FSH increase affects follicle development. J Clin Endocrinol Metab. 1998;83(4):1292–1298.

    CAS  PubMed  Google Scholar 

  9. Brown JB. Pituitary control of ovarian function—concepts derived from gonadotropin therapy. Aust N Z J Obstet Gynaecol. 1978;18(1):46–54.

    CAS  PubMed  Google Scholar 

  10. Yong EL, Baird DT, Yates R, Reichert LE Jr, Hillier SG. Hormonal regulation of the growth and steroidogenic function of human granulosa cells. J Clin Endocrinol Metab. 1992; 74(4):842–849.

    CAS  PubMed  Google Scholar 

  11. Chappel SC, Howles C. Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. Hum Reprod. 1991;6(9):1206–1212.

    CAS  PubMed  Google Scholar 

  12. Wide L, Bakos O. More basic forms of both human follicle-stimulating hormone and luteinizing hormone in serum at midcycle compared with the follicular or luteal phase. J Clin Endocrinol Metab. 1993;76(4):885–889.

    CAS  PubMed  Google Scholar 

  13. Ulloa-Aguirre A, Timossi C, Damian-Matsumura P, Dias JA. Role of glycosylation in function of follicle-stimulating hormone. Endocrine. 1999;11(3):205–215.

    CAS  PubMed  Google Scholar 

  14. Barrios-de-Tomasi J, Timossi C, Merchant H, et al. Assessment of the in vitro and in vivo biological activities of the human follicle-stimulating isohormones. Mol Cell Endocrinol. 2002;186(2): 189–198.

    CAS  PubMed  Google Scholar 

  15. Ulloa-Aguirre A, Timossi C, Barrios-de-Tomasi J, Maldonado A, Nayudu P. Impact of carbohydrate heterogeneity in function of follicle-stimulating hormone: studies derived from in vitro and in vivo models. Biol Reprod. 2003;69(2):379–389.

    CAS  PubMed  Google Scholar 

  16. Yding Andersen C, Leonardsen L, Ulloa-Aguirre A, Barrios-De-Tomasi J, Moore L, Byskov AG. FSH-induced resumption of meioses in mouse oocytes: effect of different isoforms. Mol Hum Reprod. 1999;5(8):726–731.

    CAS  PubMed  Google Scholar 

  17. Vitt UA, Kloosterboer HJ, Rose UM, et al. Isoforms of human recombinant follicle-stimulating hormone: comparison of effects on murine follicle development in vitro. Biol Reprod. 1998;59(4): 854–861.

    CAS  PubMed  Google Scholar 

  18. Timossi CM, Barrios-de-Tomasi J, Gonzalez-Suarez R, et al. Differential effects of the charge variants of human follicle-stimulating hormone. J Endocrinol. 2000;165(2):193–205.

    CAS  PubMed  Google Scholar 

  19. Creus S, Chaia Z, Pellizzari EH, et al. Human FSH isoforms: carbohydrate complexity as determinant of in-vitro bioactivity. Mol Cell Endocrinol. 2001;174(1–2):41–49.

    CAS  PubMed  Google Scholar 

  20. Colacurci N, Caprio F, La Verde E, et al. Sequential protocol with urinary-FSH/recombinant-FSH versus standard protocol with recombinant-FSH in women of advanced age undergoing IVF. Gynecol Endocrinol. 2014;30(10):730–733.

    CAS  PubMed  Google Scholar 

  21. Anobile CJ, Talbot JA, McCann SJ, Padmanabhan V, Robertson WR. Glycoform composition of serum gonadotropins through the normal menstrual cycle and in the post-menopausal state. Mol Hum Reprod. 1998;4(7):631–639.

    CAS  PubMed  Google Scholar 

  22. Gurgan T, Montjean D, Demirol A, Menezo YJ. Sequential (hFSH + recFSH) vs homogenous (hFSH or recFSH alone) stimulation: clinical and biochemical (cumulus cell gene expression) aspects. J Assist Reprod Genet. 2014;31(6):657–665.

    PubMed  PubMed Central  Google Scholar 

  23. Bedaiwy MA, Mousa NA, Esfandiari N, et al. Follicular phase dynamics with combined aromatase inhibitor and follicle stimulating hormone treatment. J Clin Endocrinol Metab. 2007;92(3): 825–833.

    CAS  PubMed  Google Scholar 

  24. Mitwally MF, Casper RF. Aromatase inhibitors for the treatment of infertility. Expert Opin Investig Drugs. 2003;12(3):353–371.

    CAS  PubMed  Google Scholar 

  25. Oktay K, Hourvitz A, Sahin G, et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab. 2006;91(10):3885–3890.

    CAS  PubMed  Google Scholar 

  26. Thomas CM, Span PN, Smeenk JM, Hanssen RG, Braat DD, Sweep FC. Occurrence of postmenopausal-like acidic follicle-stimulating hormone (FSH) isoforms precedes the rise of FSH before menopause. Fertil Steril. 2009;92(2):613–619.

    CAS  PubMed  Google Scholar 

  27. Lunenfeld B. Historical perspectives in gonadotropin therapy. Hum Reprod Update. 2004;10(6):453–467.

    CAS  PubMed  Google Scholar 

  28. Donini P, Puzzuoli D, D’Alessio I, Lunenfeld B, Eshkol A, Parlow AF. Purification and separation of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from human postmenopausal gonadotropin (HMG). II. Preparation of biological apparently pure FSH by selective binding of the LH with an anti-HGG serum and subsequent chromatography. Acta Endocrinol (Copenh). 1966;52(2):186–198.

    CAS  Google Scholar 

  29. Fertinex™ (urofollitropin for injection, purified). Web site. http://www.medilexicon.com/drugs/fertinex.php. Accessed September 17, 2015.

  30. Gonal-f® RFF Redi-ject™ (follitropin alfa injection) for subcutaneous use [package insert]. Rockland, MA: EMD Serono, Inc; 2014.

  31. FOLLISTIM® AQ Cartridge (follitropin beta injection) for subcutaneous use [package insert]. Whitehouse Station, NJ: Merck & Co; 2013.

  32. Howles CM. Genetic engineering of human FSH (Gonal-F). Hum Reprod Update. 1996;2(2):172–191.

    CAS  PubMed  Google Scholar 

  33. Shoham Z, Insler V. Recombinant technique and gonadotropins production: new era in reproductive medicine. Fertil Steril. 1998;69(suppl 2):3S–15S.

    Google Scholar 

  34. Notari S, Qing L, Pocchiari M, et al. Assessing prion infectivity of human urine in sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis. 2012;18(1):21–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vernazza P, Semprini E, De Sutter P. ESHRE position statement concerning prion detection in urinary gonadotropin formulations. Web site. http://www.eshre.eu/Guidelines-and-Legal/ESHRE-Position-Papers.aspx. Accessed September 17, 2015.

  36. BRAVELLE® (urofollitropin for injection, purified) for subcutaneous or intramuscular injection use [package insert]. Parsippany, NJ: Ferring Pharmaceuticals, Inc; 2002.

  37. Wolfenson C, Groisman J, Couto AS, et al. Batch-to-batch consistency of human-derived gonadotropin preparations compared with recombinant preparations. Reprod Biomed Online. 2005; 10(4):442–454.

    CAS  PubMed  Google Scholar 

  38. Fauser BC, Mannaerts BM, Devroey P, et al. Advances in recombinant DNA technology: corifollitropin alfa, a hybrid molecule with sustained follicle-stimulating activity and reduced injection frequency. Hum Reprod Update. 2009;15(3):309–321.

    CAS  PubMed  Google Scholar 

  39. Elonva. Elonva 100 micrograms solution for injection. Summary of Product Characteristics. Hertfordshire, UK: Merck Sharp & Dohme Limited; 2014.

  40. Arce JC, Nyboe AA, Fernandez-Sanchez M, et al. Ovarian response to recombinant human follicle-stimulating hormone: a randomized, antimüllerian hormone-stratified, dose-response trial in women undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2014;102(6):1633–1640.e5.

    CAS  PubMed  Google Scholar 

  41. Nyboe Andersen A, Barri P, Garcia-Velasco JA, et al. Dose-response endocrine profiles for a novel recombinant FSH preparation (FE 999049) derived from a human cell-line. Fertil Steril. 2013;100(Suppl 3):S18.

  42. Tandler-Schneider A, Griesinger G, Torok A, et al. Fully human glycooptimized recombinant FSH: a randomized, assessor-blind, multi-center, multi-national phase II trial to investigate the efficacy and safety of FSH-GEX in women undergoing ART. Presented at: 30th Annual Meeting of the European Society of Human Reproduction and Embryology (ESHRE); June 29-July 2, 2014; Munich, Germany. Abstract 0–120.

  43. Kawasaki N, Itoh S, Hashii N, et al. The significance of glycosylation analysis in development of biopharmaceuticals. Biol Pharm Bull. 2009;32(5):796–800.

    CAS  PubMed  Google Scholar 

  44. Haller-Kikkatalo K, Salumets A, Uibo R. Review on autoimmune reactions in female infertility: antibodies to follicle stimulating hormone. Clin Dev Immunol. 2012;2012:762541.

    PubMed  Google Scholar 

  45. Hokke CH, Bergwerff AA, van Dedem GW, van Oostrum J, Kamerling JP, Vliegenthart JF. Sialylated carbohydrate chains of recombinant human glycoproteins expressed in Chinese hamster ovary cells contain traces of N-glycolylneuraminic acid. FEBS Lett. 1990;275(1–2):9–14.

    CAS  PubMed  Google Scholar 

  46. Ghaderi D, Taylor RE, Padler-Karavani V, et al. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol. 2010;28(8): 863–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9): 936–949.

    CAS  PubMed  Google Scholar 

  48. Yding Andersen C, Westergaard LG, van Wely M. FSH isoform composition of commercial gonadotropin preparations: a neglected aspect? Reprod Biomed Online. 2004;9(2):231–236.

    Google Scholar 

  49. Arey BJ, Stevis PE, Deecher DC, et al. Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol Endocrinol. 1997;11(5):517–526.

    CAS  PubMed  Google Scholar 

  50. Coticchio G, Fleming S. Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks FSH-induced but not spontaneous meiotic resumption in mouse oocytes. Dev Biol. 1998;203(1):201–209.

    CAS  PubMed  Google Scholar 

  51. Nguyen VT, Singh V, Butnev VY, et al. Inositol phosphate stimulation by LH requires the entire alpha Asn56 oligosaccharide. Mol Cell Endocrinol. 2003;199(1–2):73–86.

    CAS  PubMed  Google Scholar 

  52. Bassett R, Lispi M, Ceccarelli D, et al. Analytical identification of additional impurities in urinary-derived gonadotropins. Reprod Biomed Online. 2009;19(3):300–313.

    CAS  PubMed  Google Scholar 

  53. Devroey P, Pellicer A, Nyboe AA, et al. A randomized assessor-blind trial comparing highly purified hMG and recombinant FSH in a GnRH antagonist cycle with compulsory single-blastocyst transfer. Fertil Steril. 2012;97(3):561–571.

    CAS  PubMed  Google Scholar 

  54. Kilani Z, Dakkak A, Ghunaim S, et al. A prospective, randomized, controlled trial comparing highly purified hMG with recombinant FSH in women undergoing ICSI: ovarian response and clinical outcomes. Hum Reprod. 2003;18(6):1194–1199.

    CAS  PubMed  Google Scholar 

  55. Smitz J, Andersen AN, Devroey P, Arce JC, MERIT Group. Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients. Hum Reprod. 2007;22(3):676–687.

    CAS  PubMed  Google Scholar 

  56. Practice Committee of American Society for Reproductive Medicine. Gonadotropin preparations: past, present, and future perspectives. Fertil Steril. 2008;90(5 suppl):S13–S20.

    Google Scholar 

  57. Yding Andersen C, Ezcurra D. What is the clinical relevance of follicle-stimulating hormone isoforms in fertility treatment? Reprod Biol Insights. 2011;4:1–10.

    Google Scholar 

  58. Daya S, Gunby J. Recombinant versus urinary follicle stimulating hormone for ovarian stimulation in assisted reproduction cycles. Cochrane Database Syst Rev. 2000;(4):CD002810.

    Google Scholar 

  59. Daya S, Gunby JL. Recombinant versus urinary follicle stimulating hormone for ovarian stimulation in assisted reproduction cycles. Cochrane Database Syst Rev. 2000;(4):CD002810.

    Google Scholar 

  60. Clinical assessment of recombinant human follicle-stimulating hormone in stimulating ovarian follicular development before in vitro fertilization. Recombinant Human FSH Study Group. Fertil Steril. 1995;63(1):77–86.

    Google Scholar 

  61. Hedon B, Out HJ, Hugues JN, et al. Efficacy and safety of recombinant follicle stimulating hormone (Puregon) in infertile women pituitary-suppressed with triptorelin undergoing in-vitro fertilization: a prospective, randomized, assessor-blind, multicentre trial. Hum Reprod. 1995;10(12):3102–3106.

    CAS  PubMed  Google Scholar 

  62. Out HJ, Mannaerts BM, Driessen SG, Bennink HJ. A prospective, randomized, assessor-blind, multicentre study comparing recombinant and urinary follicle stimulating hormone (Puregon versus Metrodin) in in-vitro fertilization. Hum Reprod. 1995;10(10): 2534–2540.

    CAS  PubMed  Google Scholar 

  63. Dickey RP, Thornton M, Nichols J, Marshall DC, Fein SH, Nardi RV; Bravelle IVF Study Group. Comparison of the efficacy and safety of a highly purified human follicle-stimulating hormone (Bravelle) and recombinant follitropin-beta for in vitro fertilization: a prospective, randomized study. Fertil Steril. 2002; 77(6):1202–1208.

    PubMed  Google Scholar 

  64. Dickey RP, Nichols JE, Steinkampf MP, et al. Highly purified human-derived follicle-stimulating hormone (Bravelle) has equivalent efficacy to follitropin-beta (Follistim) in infertile women undergoing in vitro fertilization. Reprod Biol Endocrinol. 2003;1:63.

    PubMed  PubMed Central  Google Scholar 

  65. Balen A, Platteau P, Andersen AN, et al. Highly purified FSH is as efficacious as recombinant FSH for ovulation induction in women with WHO Group II anovulatory infertility: a randomized controlled non-inferiority trial. Hum Reprod. 2007;22(7): 1816–1823.

    CAS  PubMed  Google Scholar 

  66. Bergh C, Howles CM, Borg K, et al. Recombinant human follicle stimulating hormone (r-hFSH; Gonal-F) versus highly purified urinary FSH (Metrodin HP): results of a randomized comparative study in women undergoing assisted reproductive techniques. Hum Reprod. 1997;12(10):2133–2139.

    CAS  PubMed  Google Scholar 

  67. van Wely M, Kwan I, Burt AL, Thomas J, Vail A, Van der Veen F, Al-Inany HG. Recombinant versus urinary gonadotropin for ovarian stimulation in assisted reproductive technology cycles. Cochrane Database Syst Rev. 2011;(2):CD005354.

    Google Scholar 

  68. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–926.

    PubMed  PubMed Central  Google Scholar 

  69. Feigenbaum SL, Miller P, Kaufmann R, et al. A new highly purified human-derived FSH, Bravelle™, is as effective and well tolerated as recombinant follitropin beta in ovulation induction in infertile women with ovulatory dysfunction. Today’s Ther Trends. 2001;19(4):297–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Smitz MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smitz, J., Wolfenson, C., Chappel, S. et al. Follicle-Stimulating Hormone: A Review of Form and Function in the Treatment of Infertility. Reprod. Sci. 23, 706–716 (2016). https://doi.org/10.1177/1933719115607992

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115607992

Keywords

Navigation