Skip to main content

Advertisement

Log in

Prepregnancy Body Mass Index and Gestational Weight Gain Have No Negative Impact on Maternal or Neonatal Iron Status

Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

To assess the impact of maternal obesity and excessive gestational weight gain (GWG) on maternal and neonatal iron status and to explore the possible mediating role of inflammation on hepcidin.

Methods

This analysis included 230 pregnant adolescents (13-18 years) enrolled in either a longitudinal or a cross-sectional study. Prepregnancy body mass index (ppBMI) and GWG were obtained from medical records. Maternal iron status (hemoglobin, serum iron, ferritin, transferrin receptor, total body iron, and hepcidin) and inflammation (interleukin-6 [IL-6] and leptin) were assessed at midgestation (26.2 ± 3.3 weeks) in the longitudinal cohort and at delivery (39.8 ± 1.3 weeks) in both study cohorts. Cord blood was collected in both studies and analyzed for iron indicators.

Results

Approximately 40% of the adolescents entered pregnancy overweight or obese. Multivariate analysis identified ppBMI as a negative predictor of serum iron at midgestation (P = .009) and a positive predictor of serum hepcidin at delivery (P = .02). None of the other maternal iron status indicators were significantly associated with ppBMI or GWG. Serum IL-6 was significantly positively associated with hepcidin at delivery (P = .0001) but not at midgestation. There was a positive relationship between ppBMI and cord hemoglobin (P = .03).

Conclusion

These results suggest that adiposity-related inflammation does not override the iron-mediated signals that regulate hepcidin production during pregnancy, and in this adolescent cohort, there is no strong evidence for a detrimental effect of maternal obesity and excessive weight gain on iron status in the offspring at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–497.

    PubMed  Google Scholar 

  2. Institute of Medicine. Weight Gain during Pregnancy: Reexamining the Guidelines. Washington, DC: National Academy Press; 2009.

    Google Scholar 

  3. American College of Obstetricians and Gynecologists. ACOG Committee opinion no. 549: obesity in pregnancy. Obstet Gynecol. 2013;121(1):213–217.

    Google Scholar 

  4. Mei Z, Cogswell ME, Looker AC, et al. Assessment of iron status in US pregnant women from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Am J Clin Nutr. 2011;93(6):1312–1320.

    CAS  PubMed  Google Scholar 

  5. Dao MC, Sen S, Iyer C, Klebenov D, Meydani SN. Obesity during pregnancy and fetal iron status: is hepcidin the link? J Perinatol. 2013;33(3):177–181.

    CAS  PubMed  Google Scholar 

  6. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461–2463.

    CAS  PubMed  Google Scholar 

  7. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011; 117(17):4425–4433.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung B, Matak P, McKie AT, Sharp P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J Nutr. 2007;137(11):2366–2370.

    CAS  PubMed  Google Scholar 

  9. Aeberli I, Hurrell RF, Zimmermann MB. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int J Obes (Lond). 2009; 33(10):1111–1117.

    CAS  Google Scholar 

  10. del Giudice EM, Santoro N, Amato A, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab. 2009;94(12): 5102–5107.

    PubMed  Google Scholar 

  11. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, et al. Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity (Silver Spring). 2010;18(7):1449–1456.

    CAS  Google Scholar 

  12. Phillips AK, Roy SC, Lundberg R, et al. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J Perinatol. 2014;34(7):513–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Young BE, McNanley TJ, Cooper EM, et al. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am J Clin Nutr. 2012;95(5): 1103–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Young BE, McNanley TJ, Cooper EM, et al. Vitamin D insufficiency is prevalent and vitamin D is inversely associated with parathyroid hormone and calcitriol in pregnant adolescents. J Bone Miner Res. 2012;27(1):177–186.

    CAS  PubMed  Google Scholar 

  15. Lee S, Guillet R, Cooper EM, et al. Maternal inflammation at delivery affects assessment of maternal iron status. J Nutr. 2014;144(10):1524–1532.

    CAS  PubMed  Google Scholar 

  16. National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. Obes Res. 1998;6(suppl 2): 51S-209S.

    Google Scholar 

  17. Chmitorz A, von Kries R, Rasmussen KM, Nehring I, Ensenauer R. Do trimester-specific cutoffs predict whether women ultimately stay within the Institute of Medicine/National Research Council guidelines for gestational weight gain? Findings of a retrospective cohort study. Am J Clin Nutr. 2012; 95(6):1432–1437.

    CAS  PubMed  Google Scholar 

  18. Young MF, Griffin I, Pressman E, et al. Utilization of iron from an animal-based iron source is greater than that of ferrous sulfate in pregnant and nonpregnant women. J Nutr. 2010;140(12): 2162–2166.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cook JD, Flowers CH, Skikne BS. The quantitative assessment of body iron. Blood. 2003;101(9):3359–3364.

    CAS  PubMed  Google Scholar 

  20. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112(10): 4292–4297.

    CAS  PubMed  Google Scholar 

  21. Young MF, Griffin I, Pressman E, et al. Maternal hepcidin is associated with placental transfer of iron derived from dietary heme and nonheme sources. J Nutr. 2012;142(1):33–39.

    CAS  PubMed  Google Scholar 

  22. Rehu M, Punnonen K, Ostland V, et al. Maternal serum hepcidin is low at term and independent of cord blood iron status. Eur J Haematol. 2010;85(4):345–352.

    CAS  PubMed  Google Scholar 

  23. Tamura T, Goldenberg RL, Hou JR, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140(2):165–170.

    CAS  PubMed  Google Scholar 

  24. Cheng HL, Bryant CE, Rooney KB, et al. Iron, hepcidin and inflammatory status of young healthy overweight and obese women in Australia. PLoS One. 2013;8(7):e68675.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Andriopoulos B Jr, Corradini E, Xia Y, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009;41(4):482–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Armitage AE, Eddowes LA, Gileadi U, et al. Hepcidin regulation by innate immune and infectious stimuli. Blood. 2011;118(15): 4129–4139.

    PubMed  Google Scholar 

  27. Cepeda-Lopez AC, Osendarp SJ, Melse-Boonstra A, et al. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am J Clin Nutr. 2011; 93(5):975–983.

    CAS  PubMed  Google Scholar 

  28. Yanoff LB, Menzie CM, Denkinger B, et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond). 2007;31(9):1412–1419.

    CAS  Google Scholar 

  29. Tussing-Humphreys LM, Liang H, Nemeth E, Freels S, Braunschweig CA. Excess adiposity, inflammation, and irondeficiency in female adolescents. J Am Diet Assoc. 2009; 109(2):297–302.

    CAS  PubMed  Google Scholar 

  30. Derbent AU, Simavli SA, Kaygusuz I, et al. Serum hepcidin is associated with parameters of glucose metabolism in women with gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2013; 26(11):1112–1115.

    CAS  PubMed  Google Scholar 

  31. Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, et al. Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011;117(25):e218–e225.

    CAS  PubMed  Google Scholar 

  32. Simavli S, Derbent AU, Uysal S, Turhan NÖ. Hepcidin, iron status, and inflammation variables among healthy pregnant women in the Turkish population. J Matern Fetal Neonatal Med. 2014; 27(1):75–79.

    CAS  PubMed  Google Scholar 

  33. Auguet T, Quintero Y, Terra X, et al. Upregulation of lipocalin 2 in adipose tissues of severely obese women: positive relationship with proinflammatory cytokines. Obesity (Silver Spring). 2011; 19(12):2295–2300.

    CAS  Google Scholar 

  34. Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10(5):1045–1056.

    CAS  PubMed  Google Scholar 

  35. Yan QW, Yang Q, Mody N, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007;56(10):2533–2540.

    CAS  PubMed  Google Scholar 

  36. Khaodhiar L, Ling PR, Blackburn GL, Bistrian BR. Serum levels of interleukin-6 and C-reactive protein correlate with body mass index across the broad range of obesity. JPEN J Parenter Enteral Nutr. 2004;28(6):410–415.

    CAS  PubMed  Google Scholar 

  37. Samouilidou E, Pantelias K, Petras D, et al. Serum hepcidin levels are associated with serum triglycerides and interleukin-6 concentrations in patients with end-stage renal disease. Ther Apher Dial. 2014;18(3):279–283.

    CAS  PubMed  Google Scholar 

  38. van Eijk LT, Kroot JJ, Tromp M, van der Hoeven JG, Swinkels DW, Pickkers P. Inflammation-induced hepcidin-25 is associated with the development of anemia in septic patients: an observational study. Crit Care. 2011;15(1):R9.

    PubMed  PubMed Central  Google Scholar 

  39. Briggs MM, Hopman WM, Jamieson MA. Comparing pregnancy in adolescents and adults: obstetric outcomes and prevalence of anemia. J Obstet Gynaecol Can. 2007;29(7):546–555.

    PubMed  Google Scholar 

  40. Iannotti LL, O’Brien KO, Chang SC, et al. Iron deficiency anemia and depleted body iron reserves are prevalent among pregnant African-American adolescents. J Nutr. 2005;135(11): 2572–2577.

    CAS  PubMed  Google Scholar 

  41. de Benoist B, McLean E, Egli I, Cogswell M. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia. Geneva: WHO Press; 2008.

    Google Scholar 

  42. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 95: anemia in pregnancy. Obstet Gynecol. 2008;112(1):201–207.

    Google Scholar 

  43. Scholl TO. Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81(5):1218S-1222S.

    CAS  PubMed  Google Scholar 

  44. Holland E, Moore Simas TA, Doyle Curiale DK, Liao X, Waring ME. Self-reported pre-pregnancy weight versus weight measured at first prenatal visit: effects on categorization of prepregnancy body mass index. Matern Child Health J. 2013; 17(10):1872–1878.

    PubMed  Google Scholar 

  45. Mandujano A, Huston-Presley L, Waters TP, Catalano PM. Women’s reported weight: is there a discrepancy? J Matern Fetal Neonatal Med. 2012;25(8): 1395–1398.

    PubMed  Google Scholar 

  46. Nielsen JN, O’Brien KO, Witter FR, et al. High gestational weight gain does not improve birth weight in a cohort of African American adolescents. Am J Clin Nutr. 2006;84(1):183–189.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly O. O’Brien PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Pressman, E.K., Cooper, E.M. et al. Prepregnancy Body Mass Index and Gestational Weight Gain Have No Negative Impact on Maternal or Neonatal Iron Status. Reprod. Sci. 23, 613–622 (2016). https://doi.org/10.1177/1933719115607976

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115607976

Keywords

Navigation