Skip to main content

Advertisement

Log in

Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We determined the impact of moderate maternal nutrient restriction (MNR) in guinea pigs on pregnancy outcomes, maternal/fetal growth parameters, and blood analytes to further characterize the utility of this model for inducing fetal growth restriction (FGR). Thirty guinea pig sows were fed ad libitum (Control) or 70% of the control diet prepregnant switching to 90% at midpregnancy (MNR). Animals were necropsied near term with weights obtained on all sows, fetuses, and placenta. Fetal blood sampling and organ dissection were undertaken in appropriate for gestational age (AGA) fetuses from Control litters and FGR fetuses from MNR litters using > or < 80 g which approximated the 10th percentile for the population weight distribution of the Control fetuses. MNR fetal demise rates (1/43) were extremely low in contrast to that seen with uterine artery ligation/ablation models, albeit with increased preterm delivery in MNR sows (3 of 15). We confirm that MNR fetuses are smaller and have increased placental/fetal weight ratios as often seen in human FGR infants. We provide justification for using a fetal weight threshold for categorizing AGA Control and FGR-MNR cohorts reducing population variance, and show that FGR-MNR fetuses have asymmetrical organ growth, and are polycythemic and hypoglycemic which are also well associated with moderate FGR in humans. These findings further support the utility of moderate MNR in guinea pigs for inducing FGR with many similarities to that in humans with moderate growth restriction whether resulting from maternal undernourishment or placental insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer MS, Olivier M, McLean FH, Willis DM, Usher RH. Impact of intrauterine growth retardation and body proportionality on fetal and neonatal outcome. Pediatrics. 1990;86(5): 707–713.

    Article  CAS  PubMed  Google Scholar 

  2. Piper JM, Xenakis EM, McFarland M, Elliott BD, Berkus MD, Langer O. Do growth-retarded premature infants have different rates of perinatal morbidity and mortality than appropriately grown premature infants? Obstet Gynecol. 1996;87(2):169–174.

    Article  CAS  PubMed  Google Scholar 

  3. Lackman F, Capewell V, Richardson B, daSilva O, Gagnon R. The risks of spontaneous preterm delivery and perinatal mortality in relation to size at birth according to fetal versus neonatal growth standards. Am J Obstet Gynecol. 2001;184(5):946–953.

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 suppl):588S–95S.

    Article  CAS  PubMed  Google Scholar 

  5. Pryor J, Silva PA, Brooke M. Growth, development and behaviour in adolescents born small-for-gestational-age. J Paediatr Child Health. 1995;31(5):403–407.

    Article  CAS  PubMed  Google Scholar 

  6. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71(5 suppl):1344S–1352S.

    Article  CAS  PubMed  Google Scholar 

  7. Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(pt 2): 355–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fowden AL, Giussani DA, Forhead AJ. Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda). 2006;21:29–37.

    CAS  Google Scholar 

  9. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond). 2007;113(1):1–13.

    Article  CAS  Google Scholar 

  10. Walker SP, Wachs TD, Gardner JM, et al. Child development: risk factors for adverse outcomes in developing countries. Lancet. 2007;369(9556):145–157.

    Article  PubMed  Google Scholar 

  11. Kingdom JC, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 1997;18(8):613–21.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrazzi E, Rigano S, Bozzo M, et al. Umbilical vein blood flow in growth-restricted fetuses. Ultrasound Obstet Gynecol. 2000; 16(5):432–438.

    Article  CAS  PubMed  Google Scholar 

  13. Robinson JS, Kingston EJ, Jones CT, Thorburn GD. Studies on experimental growth retardation in sheep. The effect of removal of a endometrial caruncles on fetal size and metabolism. J Dev Physiol. 1979;1(5):379–398.

    CAS  PubMed  Google Scholar 

  14. Regnault TR, Orbus RJ, Battaglia FC, Wilkening RB, Anthony RV. Altered arterial concentrations of placental hormones during maximal placental growth in a model of placental insufficiency. J Endocrinol. 1999;162(3):433–442.

    Article  CAS  PubMed  Google Scholar 

  15. Lafeber HN, Rolph TP, Jones CT. Studies on the growth of the fetal guinea pig. The effects of ligation of the uterine artery on organ growth and development. J Dev Physiol 1984;6(6): 441–459.

    CAS  PubMed  Google Scholar 

  16. Jansson T, Persson E. Placental transfer of glucose and amino acids in intrauterine growth retardation: studies with substrate analogs in the awake guinea pig. Pediatr Res. 1990;28(3): 203–208.

    Article  CAS  PubMed  Google Scholar 

  17. Detmer A, Carter AM. Factors influencing the outcome of ligating the uterine artery and vein in a guinea pig model of intrauterine growth retardation. Scand J Lab Anim Sci. 1992;19(1):9–16.

    Google Scholar 

  18. Turner AJ, Trudinger BJ. A modification of the uterine artery restriction technique in the guinea pig fetus produces asymmetrical ultrasound growth. Placenta. 2009;30(3):236–40.

    Article  CAS  PubMed  Google Scholar 

  19. Murotsuki J, Challis JR, Han VK, Fraher LJ, Gagnon R. Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. Am J Physiol. 1997; 272(1 pt 2):R201-R207.

    CAS  PubMed  Google Scholar 

  20. Godfrey K, Robinson S. Maternal nutrition, placental growth and fetal programming. Proc Nutr Soc. 1998;57(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  21. Lumey LH. Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta. 1998;19(1): 105–11.

    Article  CAS  PubMed  Google Scholar 

  22. Sohlstrom A, Katsman A, Kind KL, et al. Food restriction alters pregnancy-associated changes in IGF and IGFBP in the guinea pig. Am J Physiol. 1998;274(3 pt 1):E410–E416.

    CAS  PubMed  Google Scholar 

  23. Heasman L, Clarke L, Stephenson TJ, Symonds ME. The influence of maternal nutrient restriction in early to mid-pregnancy on placental and fetal development in sheep. Proc Nutr Soc. 1999;58(2):283–288.

    Article  CAS  PubMed  Google Scholar 

  24. Edwards LJ, McMillen IC. Maternal undernutrition increases arterial blood pressure in the sheep fetus during late gestation. J Physio. 2001;533(pt 2):561–570.

    Article  CAS  Google Scholar 

  25. Vonnahme KA, Hess BW, Hansen TR, et al. Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol Reprod. 2003;69(1):133–140.

    Article  CAS  PubMed  Google Scholar 

  26. Redmer DA, Wallace JM, Reynolds LP. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest Anim Endocrinol. 2004;27(3):199–217.

    Article  CAS  PubMed  Google Scholar 

  27. MacLaughlin SM, Walker SK, Roberts CT, Kleemann DO, McMillen IC. Periconceptional nutrition and the relationship between maternal body weight changes in the periconceptional period and feto-placental growth in the sheep. J Physiol. 2005; 565(pt 1):111–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belkacemi L, Nelson DM, Desai M, Ross MG. Maternal undernutrition influences placental-fetal development. Biol Reprod. 2010; 83(3):325–331.

    Article  CAS  PubMed  Google Scholar 

  29. Soo PS, Hiscock J, Botting KJ, Roberts CT, Davey AK, Morrison JL. Maternal undernutrition reduces P-glycoprotein in guinea pig placenta and developing brain in late gestation. Reprod Toxicol. 2012;33(3):374–381.

    Article  CAS  PubMed  Google Scholar 

  30. Sung IK, Vohr B, Oh W. Growth and neurodevelopmental outcome of very low birth weight infants with intrauterine growth retardation: comparison with control subjects matched by birth weight and gestational age. J Pediatr. 1993;123(4):618–624.

    Article  CAS  PubMed  Google Scholar 

  31. Wienerroither H, Steiner H, Tomaselli J, Lobendanz M, Thun-Hohenstein L. Intrauterine blood flow and long-term intellectual, neurologic, and social development. Obstet Gynecol. 2001;97(3): 449–453.

    CAS  PubMed  Google Scholar 

  32. Carter AM. Animal models of human placentation–a review. Placenta. 2007;28(suppl A):S41–S47.

    Article  PubMed  Google Scholar 

  33. Roberts CT, Sohlstrom A, Kind KL, et al. Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea-pig. Placenta. 2001; 22(2–3):177–185.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts CT, Sohlstrom A, Kind KL, et al. Altered placental structure induced by maternal food restriction in guinea pigs: a role for circulating IGF-II and IGFBP-2 in the mother? Placenta. 2001; 22(suppl A):S77–S82.

    Article  PubMed  Google Scholar 

  35. Kind KL, Clifton PM, Grant PA, et al. Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig. Am J Physiol Regul Integr Comp Physiol. 2003;284(1): R140–R152.

    Article  CAS  PubMed  Google Scholar 

  36. Kind KL, Roberts CT, Sohlstrom AI, et al. Chronic maternal feed restriction impairs growth but increases adiposity of the fetal guinea pig. Am J Physiol Regul Integr Comp Physiol. 2005;288(1): R119–R126.

    Article  CAS  PubMed  Google Scholar 

  37. Stevens-Simon C, Metlay LA, McAnarney ER. Maternal pre-pregnant weight and weight gain: relationship to placental microstructure and morphometric oxygen diffusion capacity. Am J Perinatol. 1995;12(6):407–412.

    Article  CAS  PubMed  Google Scholar 

  38. Crozier SR, Robinson SM, Godfrey KM, Cooper C, Inskip HM. Women’s dietary patterns change little from before to during pregnancy. J Nutr. 2009;139(10):1956–1963.

    Article  CAS  PubMed  Google Scholar 

  39. Aherne W, Dunnill MS. Morphometry of the human placenta. Br Med Bull. 1966;22(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  40. Teasdale F, Jean-Jacques G. Intrauterine growth retardation: morphometry of the microvillous membrane of the human placenta. Placenta. 1988;9(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  41. Resnik R, Creasy RK. Intrauterine growth restriction. In: Creasy RK, Resnik R, Iams JD, Lockwood CJ, Moore TR, Greene MF, editors. Maternal-Fetal Medicine. 7 ed. Philadelphia, PA: Elsevier Sauders; 2014:743–755.

    Google Scholar 

  42. Lilley KG, Epping RJ, Hafner LM. The guinea pig estrous cycle: correlation of vaginal impedance measurements with vaginal cytologic findings. Lab Anim Sci. 1997;47(6):632–637.

    CAS  PubMed  Google Scholar 

  43. Piorkowska K, Thompson J, Nygard K, Matushewski B, Hammond R, Richardson B. Synaptic development and neuronal myelination are altered with growth restriction in fetal guinea pigs. Dev Neurosci. 2014;36(6):465–476.

    Article  CAS  PubMed  Google Scholar 

  44. Turner AJ, Trudinger BJ. Ultrasound measurement of biparietal diameter and umbilical artery blood flow in the normal fetal guinea pig. Comp Med. 2000;50(4):379–384.

    CAS  PubMed  Google Scholar 

  45. Palliser HK, Kelleher MA, Welsh TN, Zakar T, Hirst JJ. Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies. Reprod Sci. 2014;21(2):269–276.

    Article  PubMed  CAS  Google Scholar 

  46. Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ. 1987; 65(5):663–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Abrams B, Newman V. Small-for-gestational-age birth: maternal predictors and comparison with risk factors of spontaneous pre-term delivery in the same cohort. Am J Obstet Gynecol. 1991; 164(3):785–789

    Article  CAS  PubMed  Google Scholar 

  48. Lackman F, Capewell V, Gagnon R, Richardson B. Fetal umbilical cord oxygen values and birth to placental weight ratio in relation to size at birth. Am J Obstet Gynecol. 2001;185(3):674–682.

    Article  CAS  PubMed  Google Scholar 

  49. Fall CHD, Yajnik CS, Rao S, Coyaji KJ, Shier RP. The effects ofmaternal body composition before pregnancy on fetal growth: The Pune Maternal Nutrition and Fetal Growth Study. In: O’Brien PMS, Wheeler T, Barker DJP, eds. Fetal Programming, Influences on Development and Disease in Later Life. London, UK: RCOG Press; 1999: 231–245.

    Google Scholar 

  50. Richardson BS. Fetal adaptive responses to asphyxia. In: Manning F, ed. Clinics in Perinatology. Philadelphia, PA: WB Saunders Co; 1989: 595–611.

    Google Scholar 

  51. Thorn SR, Regnault TR, Brown LD, et al. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology. 2009;150(7):3021–3030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soothill PW, Nicolaides KH, Campbell S. Prenatal asphyxia, hyperlacticaemia, hypoglycaemia, and erythroblastosis in growth retarded fetuses. Br Med J (Clin Res Ed). 1987;294(6579): 1051–1053.

    Article  CAS  Google Scholar 

  53. Cox WL, Daffos F, Forestier F, et al. Physiology and management of intrauterine growth retardation: a biologic approach with fetal blood sampling. Am J Obstet Gynecol. 1988;159(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  54. Economides DL, Nicolaides KH. Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;160(2):385–389.

    Article  CAS  PubMed  Google Scholar 

  55. Nüsken KD, Schneider H, Plank C, Trollmann R, Nüsken E, Rascher W, Dötsch J. Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight. Endocrinology. 2011;152(4):1327–1335.

    Article  PubMed  CAS  Google Scholar 

  56. McMillen IC, Adams MB, Ross JT, et al. Fetal growth restriction: adaptations and consequences. Reproduction. 2001;122(2): 195–204.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan S. Richardson MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias, A.A., Ghaly, A., Matushewski, B. et al. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction. Reprod. Sci. 23, 219–227 (2016). https://doi.org/10.1177/1933719115602773

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115602773

Keywords

Navigation