Skip to main content
Log in

Maternal Obesity, Cage Density, and Age Contribute to Prostate Hyperplasia in Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Identification of modifiable risk factors is gravely needed to prevent adverse prostate health outcomes. We previously developed a murine precancer model in which exposure to maternal obesity stimulated prostate hyperplasia in offspring. Here, we used generalized linear modeling to evaluate the influence of additional environmental covariates on prostate hyperplasia. As expected from our previous work, the model revealed that aging and maternal diet-induced obesity (DIO) each correlated with prostate hyperplasia. However, prostate hyperplasia was not correlated with the length of maternal DIO. Cage density positively associated with both prostate hyperplasia and offspring body weight. Expression of the glucocorticoid receptor in prostates also positively correlated with cage density and negatively correlated with age of the animal. Together, these findings suggest that prostate tissue was adversely patterned during early life by maternal overnutrition and was susceptible to alteration by environmental factors such as cage density. Additionally, prostate hyperplasia may be acutely influenced by exposure to DIO, rather than occurring as a response to worsening obesity and comorbidities experienced by the mother. Finally, cage density correlated with both corticosteroid receptor abundance and prostate hyperplasia, suggesting that overcrowding influenced offspring prostate hyperplasia. These results emphasize the need for multivariate regression models to evaluate the influence of coordinated variables in complicated animal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2011. Bethesda, MD: National Cancer Institute; 2014. Web site. http://seer.cancer.gov/csr/1975_2011/. Accessed 15 March, 2015.

  2. Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev. 2000;14(19):2410–2434.

    CAS  PubMed  Google Scholar 

  3. Benesh EC, Humphrey PA, Wang Q, Moley KH. Maternal high-fat diet induces hyperproliferation and alters Pten/Akt signaling in prostates of offspring. Sci Rep. 2013;3:3466.

    PubMed  PubMed Central  Google Scholar 

  4. Sutcliffe S, Colditz GA. Prostate cancer: is it time to expand the research focus to early-life exposures? Nat Rev Cancer. 2013; 13(3):208–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelder JA, Lee Y. Likelihood, quasi-likelihood and pseudolikelihood—some comparisons. J Roy Stat Soc B Met. 1992;54(1): 273–284.

    Google Scholar 

  7. Surwit RS, Wang S, Petro AE, et al. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc Natl Acad Sci U S A. 1998;95(7):4061–4065.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu ZH, Wright JD, Belt B, Cardiff RD, Arbeit JM. Hypoxia-inducible factor-1 facilitates cervical cancer progression in human papillomavirus type 16 transgenic mice. Am J Pathol. 2007; 171(2):667–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Suwa T, Nyska A, Haseman JK, Mahler JF, Maronpot RR. Spontaneous lesions in control B6C3F1 mice and recommended sectioning of male accessory sex organs. Toxicol Pathol. 2002; 30(2):228–234.

    PubMed  Google Scholar 

  10. Sugimura Y, Cunha GR, Donjacour AA. Morphogenesis of ductal networks in the mouse prostate. Biol Reprod. 1986;34(5):961–971.

    CAS  PubMed  Google Scholar 

  11. Sugimura Y, Cunha GR, Donjacour AA, Bigsby RM, Brody JR. Whole-mount autoradiography study of DNA synthetic activity during postnatal development and androgen-induced regeneration in the mouse prostate. Biol Reprod. 1986;34(5):985–995.

    CAS  PubMed  Google Scholar 

  12. Garabedian EM, Humphrey PA, Gordon JI. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci U S A. 1998;95(26):15382–15387.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Humphrey PA; American Society for Clinical Pathology. Prostate Pathology. Chicago: American Society for Clinical Pathology; 2003.

    Google Scholar 

  14. Gill J. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage; 2000.

    Google Scholar 

  15. Little RJA, Rubin DB. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: John W. Wiley and Sons; 2002.

    Google Scholar 

  16. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York, NY: John Wiley & Sons; 1987.

    Google Scholar 

  17. Cranmer SJG, Gill J. We have to be discrete about this: a non-parametric imputation technique for missing categorical data. Br J Polit Sci. 2012;43(2):425–449.

    Google Scholar 

  18. Rubin DB. Multiple Imputation after 18+ Years. J Am Stat Assoc. 1996;91(434):473–489.

    Google Scholar 

  19. Schafer JL. Analysis of Incomplete Multivariate Data. London: Chapman & Hall; 1997.

    Google Scholar 

  20. Esakky P, Hansen DA, Drury AM, Moley KH. Molecular analysis of cell type-specific gene expression profile during mouse spermatogenesis by laser microdissection and qRT-PCR. Reprod Sci. 2013;20(3):238–252.

    CAS  PubMed  Google Scholar 

  21. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63(5):800–809.

    CAS  PubMed  Google Scholar 

  22. Luzzo KM, Wang Q, Purcell SH, et al. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012; 7(11):e49217.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sullivan EL, Nousen EK, Chamlou KA. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav. 2014;123:236–242.

    CAS  PubMed  Google Scholar 

  24. Jungheim ES, Travieso JL, Carson KR, Moley KH. Obesity and reproductive function. Obstet Gynecol Clin North Am. 2012; 39(4):479–493.

    PubMed  PubMed Central  Google Scholar 

  25. Kino T. Glucocorticoid receptor. In: De Groot LJ, Beck-Peccoz P, Chrousos G, et al, eds. Endotext. South Dartmouth, MA: MDText. com, Inc; 2000.

    Google Scholar 

  26. Sahu B, Laakso M, Pihlajamaa P, et al. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res. 2013;73(5):1570–1580.

    CAS  PubMed  Google Scholar 

  27. Yemelyanov A, Bhalla P, Yang X, et al. Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells: a novel therapeutic modality. Cell Cycle. 2012;11(2):395–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitagishi Y, Matsuda S. Redox regulation of tumor suppressor PTEN in cancer and aging [review]. Int J Mol Med. 2013;31(3): 511–515.

    CAS  PubMed  Google Scholar 

  29. Untergasser G, Madersbacher S, Berger P. Benign prostatic hyperplasia: age-related tissue-remodeling. Exp Gerontol. 2005; 40(3):121–128.

    PubMed  Google Scholar 

  30. Dong M, Zheng Q, Ford SP, Nathanielsz PW, Ren J. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J Mol Cell Cardiol. 2013;55:111–116.

    CAS  PubMed  Google Scholar 

  31. Harpsoe MC, Basit S, Bager P, et al. Maternal obesity, gestational weight gain, and risk of asthma and atopic disease in offspring: a study within the Danish National Birth Cohort. J Allergy Clin Immunol. 2013;131(4):1033–1040.

    PubMed  Google Scholar 

  32. Li M, Sloboda DM, Vickers MH. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res. 2011;2011:592408.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lowe A, Braback L, Ekeus C, Hjern A, Forsberg B. Maternal obesity during pregnancy as a risk for early-life asthma. J Allergy Clin Immunol. 2011;128(5):1107–1109. e1101–e1102.

    PubMed  Google Scholar 

  34. Yessoufou A, Moutairou K. Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of “metabolic memory”. Exp Diabetes Res. 2011;2011:218598.

    PubMed  PubMed Central  Google Scholar 

  35. Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL. Periconceptional nutrition and the early programming of a life of obesity or adversity. Prog Biophys Mol Biol. 2011;106(1): 307–314.

    CAS  PubMed  Google Scholar 

  36. de Assis S, Warri A, Cruz MI, et al. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun. 2012;3:1053.

    PubMed  PubMed Central  Google Scholar 

  37. La Merrill M, Harper R, Birnbaum LS, Cardiff RD, Threadgill DW. Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice. Environ Health Perspect. 2010;118(5):596–601.

    PubMed  Google Scholar 

  38. McClintock MK, Conzen SD, Gehlert S, Masi C, Olopade F. Mammary cancer and social interactions: identifying multiple environments that regulate gene expression throughout the life span. J Gerontol B Psychol Sci Soc Sci. 2005;60(spec no 1):32–41.

    PubMed  Google Scholar 

  39. Haller J, Halasz J, Mikics E, Kruk MR. Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. J Neuroendocrinol. 2004;16(6):550–557.

    CAS  PubMed  Google Scholar 

  40. Harding CF, Leshner AI. The effects of adrenalectomy on the aggressiveness of differently housed mice. Physiol Behav. 1972; 8(3):437–440.

    CAS  PubMed  Google Scholar 

  41. Gergs A, Preuss TG, Palmqvist A. Double trouble at high density: cross-level test of resource-related adaptive plasticity and crowding-related fitness. PLoS One. 2014;9(3):e91503.

    PubMed  PubMed Central  Google Scholar 

  42. Roy A, Derakhshan F, Wilson RJ. Stress peptide PACAP engages multiple signaling pathways within the carotid body to initiate excitatory responses in respiratory and sympathetic chemosensory afferents. Am J Physiol Regul Integr Comp Physiol. 2013; 304(12):R1070–R1084.

    CAS  PubMed  Google Scholar 

  43. Ludewig AH, Izrayelit Y, Park D, et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc Natl Acad Sci USA. 2013; 110(14):5522–5527.

    CAS  PubMed  Google Scholar 

  44. Herrero P. Fruit fly behavior in response to chemosensory signals. Peptides. 2012;38(2):228–237.

    CAS  PubMed  Google Scholar 

  45. Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature. 2006;442(7103):645–650.

    CAS  PubMed  Google Scholar 

  46. da Silva HB, Amaral EP, Nolasco EL, et al. Dissecting major signaling pathways throughout the development of prostate cancer. Prostate Cancer. 2013;2013:920612.

    PubMed  PubMed Central  Google Scholar 

  47. Blake CB, Meredith M. Change in number and activation of androgen receptor-immunoreactive cells in the medial amygdala in response to chemosensory input. Neuroscience. 2011;190: 228–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Christian JJ, Lemunyan CD. Adverse effects of crowding on lactation and reproduction of mice and two generations of their progeny. Endocrinology. 1958;63(5):517–529.

    CAS  PubMed  Google Scholar 

  49. Reber SO, Obermeier F, Straub RH, Falk W, Neumann ID. Chronic intermittent psychosocial stress (social defeat/overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration. Endocrinology. 2006; 147(10):4968–4976.

    CAS  PubMed  Google Scholar 

  50. Holmberg L. Obesity, nutrition, and prostate cancer: insights and issues. Eur Urol. 2013;63(5):821–822.

    PubMed  Google Scholar 

  51. Sinha R, Jastreboff AM. Stress as a common risk factor for obesity and addiction. Biol Psychiatry. 2013;73(9):827–835.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelle H. Moley MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benesh, E.C., Gill, J., Lamb, L.E. et al. Maternal Obesity, Cage Density, and Age Contribute to Prostate Hyperplasia in Mice. Reprod. Sci. 23, 176–185 (2016). https://doi.org/10.1177/1933719115597767

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115597767

Keywords

Navigation