Skip to main content
Log in

Sex-Specific Changes in Renal Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression and Enzyme Activity at Birth and Over the First Year of Life

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) are key enzymes of the renin–angiotensin system. We investigated developmental changes in renal ACE and ACE2 gene expression and activity in both male and female sheep.

Methods

Three groups of sheep (fetus, newborn, and adult) were used. Renal ACE and ACE2 activities, messenger RNA (mRNA), and protein expression were studied.

Results

Renal ACE and ACE2 activities increased at 1 year in males, while there were no changes throughout development in females. Renal ACE and ACE2 mRNA and protein showed no sex differences but increased by 1 year of age.

Conclusion

There are sex-related differences in the development of renal-converting enzyme activities that may have functional implications in terms of the regulation of blood pressure and renal function in men and women. The difference in the patterns of gene expression and enzyme activity indicates that changes in gene expression may not accurately reflect changes in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Givertz MM. Manipulation of the rennin–angiotensin system. Circulation. 2001;104(5):E14–E18.

    CAS  PubMed  Google Scholar 

  2. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205–251.

    CAS  PubMed  Google Scholar 

  3. Peach MJ. Molecular actions of angiotensin. Biochem Pharmacol. 1981;30(20):2745–2751.

    CAS  PubMed  Google Scholar 

  4. Csikos T, Gallinat S, Unger T. Extrarenal aspects of angiotensin II function. Eur J Endocrinol. 1997;136(4):349–358.

    CAS  PubMed  Google Scholar 

  5. Bottari SP, De GM, Steckelings UM, Levens NR. Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrinol. 1993;14(2):123–171.

    CAS  PubMed  Google Scholar 

  6. Carey RM. Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age. Hypertension. 2005;45(5):840–844.

    CAS  PubMed  Google Scholar 

  7. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–33243.

    CAS  PubMed  Google Scholar 

  8. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–14843.

    CAS  PubMed  Google Scholar 

  9. Santos RA, Haibara AS, Campagnole-Santos MJ, et al. Characterization of a new selective antagonist for angiotensin-(1-7), D-pro7-angiotensin-(1-7). Hypertension. 2003;41(3 pt 2):737–743.

    CAS  PubMed  Google Scholar 

  10. Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 2005;289(6):H2281–H2290.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3 pt 2):523–528.

    CAS  PubMed  Google Scholar 

  12. Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1-7): an update. Regul Pept. 2000;91(1–3):45–62.

    CAS  PubMed  Google Scholar 

  13. Wakahara S, Konoshita T, Mizuno S, et al. Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio. Endocrinology. 2007;148(5):2453–2457.

    CAS  PubMed  Google Scholar 

  14. Forhead AJ, Gillespie CE, Fowden AL. Role of cortisol in the ontogenic control of pulmonary and renal angiotensin-converting enzyme in fetal sheep near term. J Physiol. 2000; 526(pt 2):409–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Song R, Preston G, Yosypiv IV. Ontogeny of angiotensin-converting enzyme 2. Pediatr Res. 2012;71(1):13–19.

    CAS  PubMed  Google Scholar 

  16. Tikellis C, Cooper ME, Bialkowski K, et al. Developmental expression of ACE2 in the SHR kidney: a role in hypertension? Kidney Int. 2006;70(1):34–41.

    CAS  PubMed  Google Scholar 

  17. Baumbach GL, Chillon JM. Effects of angiotensin-converting enzyme inhibitors on cerebral vascular structure in chronic hypertension. J Hypertens Suppl. 2000;18(1):S7–S11.

    CAS  PubMed  Google Scholar 

  18. Salvetti A, Pedrinelli R, Arzilli F, et al. Angiotensin-converting enzyme inhibitors in hypertension: a review. Int J Clin Pharmacol Res. 1985;5(6):429–438.

    CAS  PubMed  Google Scholar 

  19. Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006;69(12):2212–2218.

    CAS  PubMed  Google Scholar 

  20. Ye M, Wysocki J, Naaz P, Salabat MR, LaPointe MS, Batlle D. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination? Hypertension. 2004;43(5):1120–1125.

    CAS  PubMed  Google Scholar 

  21. Landazuri P, Granobles C, Loango N. Gender differences in serum angiotensin-converting enzyme activity and blood pressure in children: an observational study. Arq Bras Cardiol. 2008;91(6): 352–357.

    PubMed  Google Scholar 

  22. Zapater P, Novalbos J, Gallego-Sandin S, Hernandez FT, bad-Santos F. Gender differences in angiotensin-converting enzyme (ACE) activity and inhibition by enalaprilat in healthy volunteers. J Cardiovasc Pharmacol. 2004;43(5):737–744.

    CAS  PubMed  Google Scholar 

  23. Gandolfo MT, Verzola D, Salvatore F, et al. Gender and the progression of chronic renal diseases: does apoptosis make the difference? Minerva Urol Nefrol. 2004;56(1):1–14.

    CAS  PubMed  Google Scholar 

  24. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11(2):319–329.

    CAS  PubMed  Google Scholar 

  25. Silbiger S, Neugarten J. Gender and human chronic renal disease. Gend Med. 2008;5(suppl A):S3–S10.

    PubMed  Google Scholar 

  26. Silbiger SR, Neugarten J. The impact of gender on the progression of chronic renal disease. Am J Kidney Dis. 1995;25(4):515–533.

    CAS  PubMed  Google Scholar 

  27. Silbiger SR, Neugarten J. The role of gender in the progression of renal disease. Adv Ren Replace Ther. 2003;10(1):3–14.

    PubMed  Google Scholar 

  28. Tang L, Carey LC, Bi J, et al. Gender differences in the effects of antenatal betamethasone exposure on renal function in adult sheep. Am J Physiol Regul Integr Comp Physiol. 2009;296(2): R309–R317.

    CAS  PubMed  Google Scholar 

  29. Wang DH, Elijovich F. Modulation and function of extrarenal angiotensin receptors. Cell Biochem Biophys. 1999;31(1):1–17.

    CAS  PubMed  Google Scholar 

  30. Chen K, Carey LC, Liu J, Valego NK, Tatter SB, Rose JC. The effect of hypothalamo-pituitary disconnection on the rennin–angiotensin system in the late-gestation fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1279–R1287.

    CAS  PubMed  Google Scholar 

  31. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005; 111(20):2605–2610.

    CAS  PubMed  Google Scholar 

  32. Allred AJ, Diz DI, Ferrario CM, Chappell MC. Pathways for angiotensin-(1—7) metabolism in pulmonary and renal tissues. Am J Physiol Renal Physiol. 2000;279(5):F841–F850.

    CAS  PubMed  Google Scholar 

  33. Shaltout HA, Figueroa JP, Rose JC, Diz DI, Chappell MC. Alterations in circulatory and renal angiotensin-converting enzyme and angiotensin-converting enzyme 2 in fetal programmed hypertension. Hypertension. 2009;53(2):404–408.

    CAS  PubMed  Google Scholar 

  34. Freshour JR, Chase SE, Vikstrom KL. Gender differences in cardiac ACE expression are normalized in androgen-deprived male mice. Am J Physiol Heart Circ Physiol. 2002;283(5):H1997–H2003.

    CAS  PubMed  Google Scholar 

  35. Brosnihan KB, Weddle D, Anthony MS, Heise C, Li P, Ferrario CM. Effects of chronic hormone replacement on the rennin–angiotensin system in cynomolgus monkeys. J Hypertens. 1997;15(7): 719–726.

    CAS  PubMed  Google Scholar 

  36. Kulemina LV, Ostrov DA. Prediction of off-target effects on angiotensin-converting enzyme 2. J Biomol Screen. 2011;16(8): 878–885.

    CAS  PubMed  Google Scholar 

  37. Gallagher PE, Li P, Lenhart JR, Chappell MC, Brosnihan KB. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. 1999;33(1 pt 2):323–328.

    CAS  PubMed  Google Scholar 

  38. Komukai K, Mochizuki S, Yoshimura M. Gender and the rennin–angiotensin–aldosterone system. Fundam Clin Pharmacol. 2010; 24(6):687–698.

    CAS  PubMed  Google Scholar 

  39. Liu J, Ji H, Zheng W, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17beta-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2010;1(1):6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB, Chappell MC. Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol. 2008;295(1): H10–H20.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji H, Menini S, Zheng W, Pesce C, Wu X, Sandberg K. Role of angiotensin-converting enzyme 2 and angiotensin(1-7) in 17beta-oestradiol regulation of renal pathology in renal wrap hypertension in rats. Exp Physiol. 2008;93(5):648–657.

    CAS  PubMed  Google Scholar 

  42. Wysocki J, Ye M, Soler MJ, et al. ACE and ACE2 activity in diabetic mice. Diabetes. 2006;55(7):2132–2139.

    CAS  PubMed  Google Scholar 

  43. Wosten-van Asperen RM, Lutter R, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J Pathol. 2011;225(4):618–627.

    PubMed  Google Scholar 

  44. Dai R, Phillips RA, Karpuzoglu E, Khan D, Ahmed SA. Estrogen regulates transcription factors STAT-1 and NF-kappaB to promote inducible nitric oxide synthase and inflammatory responses. J Immunol. 2009;183(11):6998–7005.

    CAS  PubMed  Google Scholar 

  45. Hernandez Prada JA, Ferreira AJ, et al. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 2008;51(5):1312–1317.

    CAS  PubMed  Google Scholar 

  46. Qi Y, Zhang J, Cole-Jeffrey CT, et al. Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension. 2013; 62(4):746–752.

    CAS  PubMed  Google Scholar 

  47. Lloyd LJ, Foster T, Rhodes P, Rhind SM, Gardner DS. Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function. J Physiol. 2012;590(2):377–393.

    CAS  PubMed  Google Scholar 

  48. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 1996;74(5):953–965.

    CAS  PubMed  Google Scholar 

  49. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123(5):2011–2023.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandnberg ME, Smith LJ, Correa-Rotter R, Hostetter TH. The paradox of the rennin–angiotensin system in chronic renal disease. Kidney Int. 1994;45(2):403–410.

    Google Scholar 

  51. Zhong JC, Huang DY, Yang YM, et al. Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension. 2004;44(6):907–912.

    CAS  PubMed  Google Scholar 

  52. Hilliard LM, Sampson AK, Brown RD, Denton KM. The “his and hers” of the rennin–angiotensin system. Curr Hypertens Rep. 2013;15(1):71–79.

    CAS  PubMed  Google Scholar 

  53. Sandberg K. Mechanisms underlying sex differences in progressive renal disease. Gend Med. 2008;5(1):10–23.

    PubMed  Google Scholar 

  54. Lankadeva YR, Singh RR, Tare M, Moritz KM, Denton KM. Loss of a kidney during fetal life: long-term consequences and lessons learned. Am J Physiol Renal Physiol. 2014;306(8):F791–F800.

    CAS  PubMed  Google Scholar 

  55. Gilbert RE, Wu LL, Kelly DJ, et al. Pathological expression of renin and angiotensin II in the renal tubule after subtotal nephrectomy. Implications for the pathogenesis of tubulointerstitial fibrosis. Am J Pathol. 1999;155(2):429–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Harris RC, Cheng HF. The intrarenal rennin–angiotensin system: a paracrine system for the local control of renal function separate from the systemic axis. Exp Nephrol. 1996;4(suppl 1):2–7.

    CAS  PubMed  Google Scholar 

  57. Schulman IH, Zhou MS, Treuer AV, Chadipiralla K, Hare JM, Raij L. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am J Nephrol. 2010;32(3):249–261.

    CAS  PubMed  Google Scholar 

  58. Vio CP, Jeanneret VA. Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. Kidney Int Suppl. 2003;(86):S57–S63.

    CAS  Google Scholar 

  59. Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest. 1986;77(6):1993–2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lafayette RA, Mayer G, Park SK, Meyer TW. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1992;90(3):766–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993; 329(20):1456–1462.

    CAS  PubMed  Google Scholar 

  62. Rose e M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006;17(11): 3067–3075.

    Google Scholar 

  63. Oudit GY, Herzenberg AM, Kassiri Z, et al. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol. 2006;168(6): 1808–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chappell MC. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS receptor axis: more than regulation of blood pressure? Hypertension. 2007;50(4): 596–599.

    CAS  PubMed  Google Scholar 

  65. Liu CX, Hu Q, Wang Y, et al. Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: a comparison with ACE inhibition. Mol Med. 2011;17(1–2):59–69.

    PubMed  Google Scholar 

  66. Gwathmey TM, Pendergrass KD, Reid SD, Rose JC, Diz DI, Chappell MC. Angiotensin-(1-7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. Hypertension. 2010;55(1):166–171.

    CAS  PubMed  Google Scholar 

  67. Koka V, Huang XR, Chung AC, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172(5):1174–1183.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tikellis C, Johnston CI, Forbes JM, et al. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension. 2003;41(3):392–397.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Rose PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Bi, J., Su, Y. et al. Sex-Specific Changes in Renal Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression and Enzyme Activity at Birth and Over the First Year of Life. Reprod. Sci. 23, 200–210 (2016). https://doi.org/10.1177/1933719115597760

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115597760

Keywords

Navigation