Skip to main content

Advertisement

Log in

Pathogenetic Mechanisms of Deep Infiltrating Endometriosis

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is a benign gynecologic disease, affecting women of reproductive age associated with chronic pelvic pain, dysmenorrhea, dyspareunia and infertility. Ovarian endometrioma (OMA), superficial peritoneal endometriosis (SPE), and deep infiltrating endometriosis (DIE) are, till now, recognized as major phenotypes. The discussion is to know whether they share the same pathogenetic mechanisms. Till today, DIE is recognized as the most severe clinical form of endometriosis and has a complex clinical management. The DIE lesions have been considered in the present article, without distinguishing between the anterior (bladder) or the posterior (vagina, uterosacral ligaments, rectum, and ureter) compartment. The present knowledge indicates that hormonal function (estrogen and progesterone receptors) and immunological factors, such as peritoneal macrophages, natural killer cells, and lymphocytes, are critically altered in DIE. The aggressive behavior of DIE may be explained by the highly decreased apoptosis (nuclear factor kappa-light-chain-enhancer of activated B cells [NF-kB], B-cell lymphoma 2 [Blc-2], and anti-Mullerian hormone) and by the increased proliferation activity related to oxidative stress (NF-kB, reactive oxygen species, extracellular regulated kinase (ERK), advanced oxidation protein product). Invasive mechanisms are more expressed (matrix metalloproteinases and activins) in DIE in comparison to the OMA and SPE. Correlated with the increased invasiveness are the data on very high expression of neuroangiogenesis (nerve growth factor, vascular endothelial growth factor, and intercellular adhesion molecule) genes in DIE. Therefore, at the present time, several of the DIE pathogenetic features result specific in comparison to other endometriosis phenotypes, pleading for the existence of a specific entity. These evidence of specific pathogenetic features of DIE may explain the more severe symptomatology related to this form of endometriosis and suggest possible future target medical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sampson J. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–469.

    Google Scholar 

  2. Machado DE, Abrão MS, Berardo PT, Takiya CM, Nasciutti LE. Vascular density and distribution of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) are significantly higher in patients with deeply infiltrating endometriosis affecting the rectum. Fertil Steril. 2008;90(1):148–155.

    CAS  PubMed  Google Scholar 

  3. Abrão MS, Podgaec S, Dias JA Jr, et al. Deeply infiltrating endo-metriosis affecting the rectum and lymph nodes. Fertil Steril. 2006;86(3):543–547.

    PubMed  Google Scholar 

  4. Noel JC, Chapron C, Fayt I, Anaf V. Lymph node involvement and lymphovascular invasion in deep infiltrating rectosigmoid endometriosis. Fertil Steril. 2008;89(5):1069–1072.

    PubMed  Google Scholar 

  5. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endo-metriosis. Ann N Y Acad Sci. 2008;1127:106–115.

    PubMed  PubMed Central  Google Scholar 

  6. Gargett CE, Schwab KE, Brosens J, Puttemans P, Benagiano G, Brosens I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol Hum Reprod. 2014;20(7)591–598.

    CAS  PubMed  Google Scholar 

  7. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  PubMed  Google Scholar 

  8. Young VJ, Brown KJ, Saunders PT, Horne AW. The role of the peritoneum in the pathogenesis of endometriosis. Human Reprod Update. 2013;19(5):558–569.

    Google Scholar 

  9. Chapron C, Chopin N, Borghese B, et al. Deeply infiltrating endo-metriosis: pathogenetic implications of the anatomical distribution. Hum Reprod. 2006;21(7)1839–1845.

    PubMed  Google Scholar 

  10. Sanchez AM, Vigano P, Somigliana E, Panina-Bordignon P, Ver-cellini P, Candiani M. The distinguishing cellular and molecular features of the endometriotic ovarian cyst: from pathophysiology to the potential endometrioma-mediated damage to the ovary. Hum Reprod Update. 2014;20(2):217–230.

    CAS  PubMed  Google Scholar 

  11. Luisi S, Renner SP, Santulli P. Endometrioma: from pathogenesis to clinical management. J Endometriosis. 2013;5(3):91–99.

    Google Scholar 

  12. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–596.

    CAS  PubMed  Google Scholar 

  13. Abrão MS, Neme RM, Carvalho FM, Aldrighi JM, Pinotti JA. Histological classification of endometriosis as a predictor of response to treatment. Int J Gynecol Obstet. 2003;82(1):31–40.

    Google Scholar 

  14. Kamergorodsky G, Ayroza Ribeiro PA, Longo Galvao MA, et al. Histologic classification of specimens from women affected by superficial endometriosis, deeply infiltrating endometriosis, and ovarian endometriomas. Fertil Steril. 2009;92(6):2074–2077.

    PubMed  Google Scholar 

  15. Anaf V, Simon P, Fayt I, Noel J. Smooth muscles are frequent components of endometriotic lesions. Hum Reprod. 2000;15(4):767–771.

    CAS  PubMed  Google Scholar 

  16. Noël JC, Chapron C, Bucella D, et al. Estrogen and progesterone receptors in smooth muscle component of deep infiltrating endo-metriosis. Fertil Steril. 2010;93(6):1774–1777.

    PubMed  Google Scholar 

  17. Anaf V, Nakadi I, Simon E, et al. Preferential infiltration of large bowel endometriosis along the nerves of the colon. Hum Reprod. 2004;19(4):996–1002.

    CAS  PubMed  Google Scholar 

  18. Chapron C, Fauconnier A, Vieira M, et al. Anatomical distribution of deeply infiltrating endometriosis: surgical implications and proposition for a classification. Hum Reprod. 2003;18(1):157–161.

    PubMed  Google Scholar 

  19. Bulun SE, Monsavais D, Pavone ME, et al. Role of estrogen receptor-beta in endometriosis. Semin Reprod Med. 2012;30(1):39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bukulmez O, Hardy DB, Carr BR, Word RA, Mendelson CR. Inflammatory status influences aromatase and steroid receptor expression in endometriosis. Endocrinology. 2008;149(3):1190–1204.

    CAS  PubMed  Google Scholar 

  21. Dassen H, Punyadeera C, Kamps R, Word RA, Mendelson CR. Estrogen metabolizing enzymes in endometrium and endometriosis. Hum Reprod. 2007;22:3148–3158.

    CAS  PubMed  Google Scholar 

  22. Han SJ, O’Malley BW. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update. 2014;20(4):467–484.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bulun SE, Cheng YH, Pavone ME, et al. Estrogen receptor-beta, estrogen receptor-alpha, and progesterone resistance in endome-triosis. Semin Reprod Med. 2010;28(1):36–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bulun SE, Cheng YH, Yin P, et al. Progesterone resistance in endometriosis: link to failure to metabolize estradiol. Mol Cell Endocrinol. 2006;248(1–2):94–103.

    CAS  PubMed  Google Scholar 

  25. Reis FM, Petraglia F, Taylor RN. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update. 2013;19(4):406–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zanatta A, Pereira RM, Rocha AM, et al. The relationship among HOXA10, estrogen receptor α, progesterone receptor, and progesterone receptor b proteins in rectosigmoid endometriosis: a tissue microarray study. Reprod Sci. 2015;22(1):31–37.

    PubMed  PubMed Central  Google Scholar 

  27. Santulli P, Marcellin L, Noel JC, et al. Sphingosine pathway deregulation in endometriotic tissues. Fertil Steril. 2012;97(4):904–911.

    CAS  PubMed  Google Scholar 

  28. Lambert S, Santulli P, Chouzenoux S, et al. Endometriosis: increasing concentrations of serum interleukin-1β and interleukin-1sRII is associated with the deep form of this pathology. J Gynecol Obstet Biol Reprod (Paris). 2014;43(9):735–743.

    CAS  Google Scholar 

  29. Santulli P, Borghese B, Chouzenoux S, et al. Serum and peritoneal interleukin-33 levels are elevated in deeply infiltrating endo-metriosis. Fertil Steril. 2013;99(1):219–226.

    CAS  PubMed  Google Scholar 

  30. Carmona F, Chapron C, Martínez-Zamora MA, et al. Ovarian endometrioma but not deep infiltrating endometriosis is associated with increased serum levels of interleukin-8 and interleukin-6. J Reprod Immunol. 2012;95(1–2):80–86.

    CAS  PubMed  Google Scholar 

  31. Santulli P, Borghese B, Noel JC, et al. Hormonal therapy deregulates prostaglandin-endoperoxidase synthetase 2 (PTGS2) expression in endometriotic tissues. J Clin Endocrinol Metab. 2014;99(3):881–890.

    CAS  PubMed  Google Scholar 

  32. Banu SK, Lee J, Speights VO Jr, et al. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkB and b-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol Endocrinol. 2009;23(2):1291–1205.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chapron C, Souza C, Borghese B, et al. Oral contraceptives and endometriosis: the past use of oral contraceptives for treating severe primary dysmenorrhea is associated with endometriosis, especially deep infiltrating endometriosis. Hum Reprod. 2011;26(8):2028–2035.

    CAS  PubMed  Google Scholar 

  34. Braga de Paula L, Pereira Braga N, Mendonça M, et al. Apoptosis of ectopic endometrial cells is impaired in women with endome-triosis. J Endometriosis. 2012;4:17–20.

    Google Scholar 

  35. Wieser F, Vigne JL, Ryan I, Hornung D, Djalali S, Taylor RN. Sulindac suppresses nuclear factor-kappaB activation and RANTES gene and protein expression in endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 2005;90(12):6441–6447.

    CAS  PubMed  Google Scholar 

  36. Defrère S, Lousse JC, Gonza lez-Ramos R, Colette S, Donnez J, Van Langendonckt A. Potential involvement of iron in the patho-genesis of peritoneal endometriosis. Mol Hum Reprod. 2008;14(7):377–385.

    PubMed  Google Scholar 

  37. Jackson LW, Schisterman EF, Dey-Rao R, Browne R, Armstrong D. Oxidative stress and endometriosis. Hum Reprod. 2005;20(7):2014–2020.

    CAS  PubMed  Google Scholar 

  38. Ngô C, Chereau C, Nicco C, Weill B, Chapron C, Batteux F. Reactive oxygen species controls endometriosis progression. Am J Pathol. 2009;175(1):225–234.

    PubMed  PubMed Central  Google Scholar 

  39. Ngô C, Nicco C, Leconte M, et al. Protein kinase inhibitors can control the progression of endometriosis in vitro and in vivo. J Pathol. 2010;222(2):148–157.

    PubMed  Google Scholar 

  40. Leconte M, Nicco C, Ngô C, et al. The mTOR/AKT inhibitor temsirolimus prevents deep infiltrating endometriosis in mice. Am J Pathol. 2011;179(2):880–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Santulli P, Chouzenoux S, Fiorese M, et al. Protein oxidative stress markers in peritoneal fluid of women with deep infiltrating endometriosis are increased. Hum Reprod. 2015;30(1):49–60.

    CAS  PubMed  Google Scholar 

  42. Ferreira MC, Witz CA, Hammes LS, Kirma N, Petraglia F, Schenken RS, Reis FM. Activin A increases invasiveness of endometrial cells in an in vitro model of human peritoneum. Mol Hum Reprod. 2008;14(5):301–307.

    CAS  PubMed  Google Scholar 

  43. Liu YG, Tekmal RR, Binkley PA, Nair HB, Schenken RS, Kirma NB. Induction of endometrial epithelial cell invasion and c-fms expression by transforming growth factor beta. Mol Hum Reprod. 2009;15(10):665–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carrarelli P, Rocha AL, Belmonte G, et al. Increased expression of antimüllerian hormone and its receptor in endometriosis. Fertil Steril. 2014;101(5):1353–1358.

    CAS  PubMed  Google Scholar 

  45. Bruner-Tran KL, Eisenberg E, Yeaman GR, Anderson TA, McBean J, Osteen KG. Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establishment of experimental endometriosis in nude mice. J Clin Endocrinol Metab. 2002;87(10):4782–4791.

    CAS  PubMed  Google Scholar 

  46. Borghese B, Chiche JD, Vernerey D, et al. Genetic polymorphisms of matrix metalloproteinase 12 and 13 genes are implicated in endometriosis progression. Hum Reprod. 2008;23(5):1207–1213.

    CAS  PubMed  Google Scholar 

  47. Wu MH, Shoji Y, Wu MC, et al. Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macro-phage is associated with severity of endometriosis. Am J Pathol. 2005;167(4):1061–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Leconte M, Chouzenoux S, Nicco C, et al. Role of the CXCL12–CXCR4 axis in the development of deep rectal endometriosis. J Reprod Immunol. 2014;103:45–52.

    CAS  PubMed  Google Scholar 

  49. Tan XJ, Lang JH, Liu DY, Shen K, Leng JH, Zhu L. Expression of vascular endothelial growth factor and thrombospondin-1 mRNA in patients with endometriosis. Fertil Steril. 2002;78(1):148–153.

    PubMed  Google Scholar 

  50. Gonzalez-Ramos R, Donnez J, Defrère S, et al. Nuclear factorkappa B is constitutively activated in peritoneal endometriosis. Mol Hum Reprod. 2007;13(7):503–509.

    CAS  PubMed  Google Scholar 

  51. Brawn J, Morotti M, Zondervan KT, Becker CM, Vincent K. Central changes associated with chronic pelvic pain and endometriosis. Hum Reprod Update. 2014;20(5):737–747.

    PubMed  Google Scholar 

  52. Morotti M, Vincent K, Brawn J, Zondervan KT, Becker CM. Peripheral changes in endometriosis-associated pain. Hum Reprod Update. 2014;20(5):717–736.

    PubMed  Google Scholar 

  53. Asante A, Taylor RN. Endometriosis: the role of neuroangiogenesis. Annu Rev Physiol. 2011;73:163–182.

    CAS  PubMed  Google Scholar 

  54. Tokushige N, Markham R, Russell P, Fraser IS. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21(11):3001–3007.

    CAS  PubMed  Google Scholar 

  55. Tulandi T, Felemban A, Chen MF. Nerve fibers and histopathology of endometriosis-harboring peritoneum. J Am Assoc Gynecol Laparosc. 2001;8(1):95–98.

    CAS  PubMed  Google Scholar 

  56. Zhang X, Yao H, Huang X, Lu B, Xu H, Zhou C. Nerve fibres in ovarian endometriotic lesions in women with ovarian endometriosis. Hum Reprod. 2010;25(2):392–397.

    PubMed  Google Scholar 

  57. Wang G, Tokushige N, Markham R, Fraser IS. Rich innervation of deep infiltrating endometriosis. Hum Reprod. 2009;24(4):827–834.

    PubMed  Google Scholar 

  58. Wang G, Tokushige N, Russell P, Dubinovsky S, Markham R, Fraser IS. Hyperinnervation in intestinal deep infiltrating endo-metriosis. J Minim Invas Gyn. 2009;16(6):713–719.

    Google Scholar 

  59. Anaf V, El Nakadi I, De Moor V, Chapron C, Pistofidis G, Noel JC. Increased nerve density in deep infiltrating endometriotic nodules. Gynecol Obstet Inves. 2011;71(2):112–117.

    CAS  Google Scholar 

  60. Anaf V, Chapron C, El Nakadi I, De Moor V, Simonart T, Noël JC. Pain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis. Fertil Steril. 2006;86(5):1336–1343.

    PubMed  Google Scholar 

  61. McKinnon B, Bersinger NA, Wotzkow C, Mueller MD. Endometriosis-associated nerve fibers, peritoneal fluid cytokine concentrations, and pain in endometriotic lesions from different locations. Fertil Steril. 2012;97(2):373–380.

    PubMed  Google Scholar 

  62. Vercellini P, Viganò P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2014;10(5):261–275.

    CAS  PubMed  Google Scholar 

  63. Colette S, Defrère S, Van Kerk O, Van Langendonckt A, Dolmans MM, Donnez J. Differential expression of steroidogenic enzymes according to endometriosis type. Fertil Steril. 2013;100(6):1642–1649.

    CAS  PubMed  Google Scholar 

  64. Santulli P, Chouzenoux S, Fiorese M, et al. Protein oxidative stress markers in peritoneal fluids of women with deep infiltrating endometriosis are increased. Hum Reprod. 2015;30(1):49–60.

    CAS  PubMed  Google Scholar 

  65. McKinnon BD, Bertschi D, Bersinger NA, Mueller MD. Inflammation and nerve fiber interaction in endometriotic pain. Trends Endocrinol Metab. 2015;26(1):1–10.

    CAS  PubMed  Google Scholar 

  66. Streuli I, de Ziegler D, Santulli P, et al. An update on the pharmacological management of endometriosis. Expert Opin Pharmac-other. 2013;14(3):291–305.

    CAS  PubMed  Google Scholar 

  67. Abrão MS, Petraglia F, Falcone T, Keckstein J, Osuga Y, Chapron C. Deep endometriosis infiltrating the recto-sigmoid: critical factors to consider before management. Hum Reprod Update. 2015;21(3):329–339.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice Petraglia MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosti, C., Pinzauti, S., Santulli, P. et al. Pathogenetic Mechanisms of Deep Infiltrating Endometriosis. Reprod. Sci. 22, 1053–1059 (2015). https://doi.org/10.1177/1933719115592713

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115592713

Keywords

Navigation