α-Amylase in Vaginal Fluid: Association With Conditions Favorable to Dominance of Lactobacillus

Abstract

Vaginal glycogen is degraded by host α-amylase and then converted to lactic acid by Lactobacilli. This maintains the vaginal pH at ≤4.5 and prevents growth of other bacteria. Therefore, host α-amylase activity may promote dominance of Lactobacilli. We evaluated whether the α-amylase level in vaginal fluid is altered in women with bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) and whether its concentration was associated with levels of lactic acid isomers and host mediators. Vaginal fluid was obtained from 43 women with BV, 50 women with VVC, and 62 women with no vulvovaginal disorders. Vaginal fluid concentrations of α-amylase, secretory leukocyte protease inhibitor (SLPI), hyaluronan, hyaluronidase-1, β-defensin, and elafin were measured by enzyme-linked immunosorbent assay (ELISA). Vaginal concentrations of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase (MMP) 8, and d- and l-lactic acid levels in these patients were previously reported. The median vaginal fluid α-amylase level was 1.83 mU/mL in control women, 1.45 mU/mL in women with VVC, and 1.07 mU/mL in women with BV. Vaginal levels of α-amylase were correlated with d-lactic acid (P = .003) but not with l-lactic acid (P > .05) and with SLPI (P < .001), hyaluronidase-1 (P < .001), NGAL (P = .001), and MMP-8 (P = .005). The exfoliation of glycogen-rich epithelial cells into the vaginal lumen by hyaluronidase-1 and MMP-8 may increase glycogen availability and promote α-amylase activity. The subsequent enhanced availability of glycogen breakdown products would favor proliferation of Lactobacilli, the primary producers of d-lactic acid in the vagina. Concomitant production of NGAL and SLPI would retard growth of BV-related bacteria.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Zakowski JJ, Bruns DE. Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci. 1985;21(4):283–322.

    CAS  PubMed  Google Scholar 

  2. 2.

    Lee YS, Raju GC. The expression and localization of amylase in normal and malignant glands of the endometrium and endocervix. J Pathol. 1988;155(3):201–205.

    CAS  PubMed  Google Scholar 

  3. 3.

    Skude G, Mårdh PA, Weström L. Amylases of the genital tract. I. Isoamylases of genital tract tissue homogenates and peritoneal fluid. Am J Obstet Gynecol. 1976;126(6):652–656.

    CAS  PubMed  Google Scholar 

  4. 4.

    Spear GT, French AL, Gilbert D, et al. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J Infect Dis. 2014;210(7): 1019–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5): 543–546.

    CAS  PubMed  Google Scholar 

  6. 6.

    Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16(9):1809–1813.

    CAS  PubMed  Google Scholar 

  7. 7.

    Linhares IM, Summers PR, Larsen B, Giraldo PC, Witkin SS. Contemporary perspectives on vaginal pH and lactobacilli. Am J Obstet Gynecol. 2011;204(2):1–5.

    Google Scholar 

  8. 8.

    Cruickshank R. The biology of the vagina in the human subject. II: The bacterial flora and secretion of the vagina in relation to glycogen in the vaginal epithelium. J Obstet Gynecol Br Emp. 1934;41(2):208–226.

    Google Scholar 

  9. 9.

    Mirmonsef P, Hotton AL, Gilbert D, et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS One. 2014;9(7):e102467.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Mitchell C, Marrazzo J. Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol. 2014;71(6): 555–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577): 1961–1971.

    PubMed  Google Scholar 

  12. 12.

    Zhou X, Westman R, Hickey R, et al. Vaginal microbiota of women with frequent vulvovaginal candidiasis. Infect Immun. 2009;77(9):4130–4135.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74(1): 14–22.

    CAS  PubMed  Google Scholar 

  14. 14.

    Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29(2):297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Beghini J, Linhares I, Giraldo P, Ledger W, Witkin S. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders [published online September 8, 2014]. BJOG. 2014. doi: 10.1111/1471–0528.13072.

  16. 16.

    Beghini J, Giraldo PC, Linhares IM, Ledger WJ, Witkin SS. Regulation of neutrophil gelatinase-associated lipocalin in vaginal fluid: relation to pathogenesis [published online February 10, 2015]. Reprod Sci. 2015.

  17. 17.

    Witkin SS, Mendes-Soares H, Linhares IM, et al. Influence of vaginal bacteria and d-and l-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. MBio. 2013;4(4):e00460–13.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA. Acid production by vaginal flora in vitro is consistent with the ratio and extent of vaginal acidification. Infect Immun. 1999;67(10): 5170–5175.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hillier SL. Diagnostic microbiology of bacterial vaginosis. Am J Obstet Gynecol. 1993;169(2 Pt 2):455–459.

    CAS  PubMed  Google Scholar 

  20. 20.

    Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immuno-globulin superfamily receptor function and role in pathology. Exp Mol Pathol. 2007;83(3):283–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Rampersaud R, Planet PJ, Randis TM, et al. Interolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol. 2011;193(5):1034–1041.

    CAS  PubMed  Google Scholar 

  22. 22.

    Simpson MA, Lokeshwar VB. Hyaluronan and hyaluronidase in genitourinary tumors. Front Biosci. 2008;13:5664–5680.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cooper MD, Roberts MH, Barauskas OL, Jarvis GA. Secretory leukocyte protease inhibitor binds to Neisseria gonorrhoeae outer membrane opacity protein and is bactericidal. Am J Reprod Immunol. 2012;68(2):116–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1(5):440–464.

    PubMed  Google Scholar 

  25. 25.

    Balkus J, Agnew K, Lawler R, Mitchell C, Hitti J. Effects of pregnancy and bacterial vaginosis on proinflammatory cytokine and secretory leukocyte protease inhibitor concentrations in vaginal secretions. J Pregnancy. 2010;2010:385981.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mitchell C, Balkus J, Agnew K, Lawler R, Hitti J. Changes in the vaginal microenvironment with metronidazole treatment for bacterial vaginosis in early pregnancy. J Womens Health. 2009; 18(11):1817–1824.

    Google Scholar 

  27. 27.

    Draper DL, Landers DV, Krohn MA, Hillier SL, Wiesenfeld HC, Heine RP. Levels of vaginal secretory leukocyte protease inhibitor are decreased in women with lower reproductive tract infections. Am J Obstet Gynecol. 2000;183(5): 1243–1248.

    CAS  PubMed  Google Scholar 

  28. 28.

    Nikolaitchouk N, Andersch B, Falsen E, Strömbeck L, Mattsby-Baltzer I. The lower genital tract microbiota in relation to cytokine-, SLPI- and endotoxin levels: application of checkerboard DNA-DNA hybridization (CDH). APMIS. 2008;116(4): 263–277.

    CAS  PubMed  Google Scholar 

  29. 29.

    Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10(5):1033–1043.

    CAS  PubMed  Google Scholar 

  30. 30.

    Jarosik GP, Land CB, Duhon P, Chandler R Jr, Mercer T. Acquisition of iron by Gardnerella vaginalis. Infect Immun. 1998; 66(10):5041–5047.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Imbert M, Blondeau R. On the iron requirement of lactobacilli grown in chemically defined medium. Curr Microbiol. 1998;37(1):64–66.

    CAS  PubMed  Google Scholar 

  32. 32.

    Elli M, Zink R, Rytz A, Reniero R, Morelli L. Iron requirement of lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol. 2000;88(4):695–703.

    CAS  PubMed  Google Scholar 

  33. 33.

    Pivarcsi A, Nagy I, Koreck A, et al. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbs Infect. 2005;7(9–10):1117–1127.

    CAS  Google Scholar 

  34. 34.

    Curvelo JA, Barreto AL, Portela MB, et al. Effect of the secretory leukocyte proteinase inhibitor (SLPI) on Candida albicans biological processes: a therapeutic alternative?. Arch Oral Biol. 2014;59(9):928–937.

    CAS  PubMed  Google Scholar 

  35. 35.

    Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, Weinberg A. Human beta-defensins: differential activeity against candida species and regulation by Candida albicans. J Dent Res. 2005; 84(5):445–450.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven S. Witkin PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasioudis, D., Beghini, J., Bongiovanni, A.M. et al. α-Amylase in Vaginal Fluid: Association With Conditions Favorable to Dominance of Lactobacillus. Reprod. Sci. 22, 1393–1398 (2015). https://doi.org/10.1177/1933719115581000

Download citation

Keywords

  • α-amylase
  • vaginal fluid
  • bacterial vaginosis
  • vulvovaginal candidiasis
  • lactic acid
  • Lactobacilli