Skip to main content
Log in

Is There a Link Between Expression Levels of Histone Deacetylase/Acetyltransferase in Mouse Sperm and Subsequent Blastocyst Development?

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Histone acetylation has been known to be significant in spermatogenesis. Histone acetylation is regulated by the act of histone deacetylases (HDACs) and histone acetyltransferases (HATs). We investigated the link between expression levels of HDACs and HATs in mouse sperm and subsequent blastocyst formation rate. In the univariate analysis, expression levels of HDAC1 and HAT were generally not associated with the blastocyst formation rate. When divided by the mature oocyte number category, a significant positive association was observed between the expression levels of HDAC1 and the blastocyst-forming rate in the highest (> 75th) percentile group (a group with ≥34 mature oocytes). In conclusion, expression of sperm HDAC1 could be considered as a possible predictor of embryo development in mice with high ovarian response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43:559–599.

    Article  CAS  Google Scholar 

  2. Turner BM. Histone acetylation and an epigenetic code. Bioes-says. 2000;22(9):836–845.

    Article  CAS  Google Scholar 

  3. Davie JR. Covalent modifications of histones: expression from chromatin templates. Curr Opin Genet Dev. 1998;8(2): 173–178.

    Article  CAS  Google Scholar 

  4. Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev. 1992;31(3):170–181.

    Article  CAS  Google Scholar 

  5. Hazzouri M, Pivot-Pajot C, Faure AK, et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 2000;79(12): 950–960.

    Article  CAS  Google Scholar 

  6. Kim JH, Jee BC, Lee JM, Suh CS, Kim SH. Histone acetylation level and histone acetyltransferase/deacetylase activity in ejaculated sperm from normozoospermic men. Yonsei Med J. 2014; 55(5):1333–1340.

    Article  CAS  Google Scholar 

  7. Steger K, Cavalcanti MC, Schuppe HC. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. Int J Androl. 2011;34(6 pt 1):513–527.

    Article  CAS  Google Scholar 

  8. Zhang H, Xiao Y, Wang X, et al. Effects of histone deacetylase inhibitors on the early development of bovine androgenetic embryos. Cell Reprogram. 2014;16(1):54–64.

    Article  CAS  Google Scholar 

  9. Oliveira CS, Saraiva NZ, de Souza MM, Tetzner TA, de Lima MR, Garcia JM. Effects of histone hyperacetylation on the preim-plantation development of male and female bovine embryos. Reprod Fertil Dev. 2010;22(6):1041–1048.

    Article  CAS  Google Scholar 

  10. Simon L, Murphy K, Shamsi MB, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402–2412.

    Article  CAS  Google Scholar 

  11. McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB, Katz-Jaffe MG. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril. 2014;102(3):692–699.

    Article  Google Scholar 

  12. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403(6769):501–502.

    Article  CAS  Google Scholar 

  13. Lalancette C, Miller D, Li Y, Krawetz SA. Paternal contributions: new functional insights for spermatozoal RNA. J Cell Biochem. 2008;104(5):1570–1579.

    Article  CAS  Google Scholar 

  14. Jin J, Huang X, Pan C, et al. Effect of sperm DNA fragmentation on IVF/ICSI clinical outcomes is diversified in women with different ovarian reserve. Abstract presented at 2014 Annual meeting of American Society of Reproductive Medicine.

  15. Kistler WS, Henriksen K, Mali P, Parvinen M. Sequential expression of nucleoproteins during rat spermiogenesis. Exp Cell Res. 1996;225(2):374–381.

    Article  CAS  Google Scholar 

  16. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–390.

    Article  CAS  Google Scholar 

  17. Grozinger CM, Schreiber SL. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol. 2002;9(1):3–16.

    Article  CAS  Google Scholar 

  18. Garrido N, Meseguer M, Alvarez J, Simón C, Pellicer A, Remohí J. Relationship among standard semen parameters, glutathione peroxidase/glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertil Steril. 2004;82(suppl 3): 1059–1066.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Chul Jee MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, JH., Jee, BC. et al. Is There a Link Between Expression Levels of Histone Deacetylase/Acetyltransferase in Mouse Sperm and Subsequent Blastocyst Development?. Reprod. Sci. 22, 1387–1392 (2015). https://doi.org/10.1177/1933719115580997

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115580997

Keywords

Navigation