Skip to main content
Log in

The Ovine Fetal and Placental Inflammatory Response to Umbilical Cord Occlusions With Worsening Acidosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We hypothesized that repetitive umbilical cord occlusions (UCOs) leading to severe acidemia will stimulate a placental and thereby fetal inflammatory response which will be exacerbated by chronic hypoxemia and low-grade bacterial infection. Chronically instrumented fetal sheep served as controls or underwent repetitive UCOs for up to 4 hours or until fetal arterial pH was <7.00. Normoxic-UCO and hypoxic-UCO fetuses had arterial O2 saturation pre-UCOs of >55% and <55%, respectively, while lipopolysaccharide (LPS)-UCO fetuses received LPS intra-amniotic (2 mg/h) starting 1 hour pre-UCOs. Fetal plasma and amniotic fluid were sampled for interleukin (IL) 6 and IL-1β. Animals were euthanized at 48 hours of recovery with placental cotyledons processed for measurement of macrophage, neutrophil, and mast cell counts. Repetitive UCOs resulted in severe fetal acidemia with pH approaching 7.00 for all 3 UCO groups. Neutrophils, while unchanged within the cotyledon fetal and intermediate zones, were ∼2-fold higher within the zona intima for all 3 UCO groups. However, no differences were observed in macrophage counts among the treatment groups and no cotyledon mast cells were seen. Fetal plasma and amniotic fluid cytokines remained little changed post-UCOs and/or at 1 and 48 hours of recovery in the normoxic-UCO and hypoxic-UCO groups but increased several fold in the LPS-UCO group with IL-6 plasma values at 1 hour recovery highly correlated with the nadir pH attained (r = −.97). As such, repetitive UCOs with severe acidemia can induce a placental inflammatory response and more so with simulated low-grade infection and likely contributing to cytokine release in the umbilical circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists. Fetal heart rate patterns: monitoring, interpretation, and management. Technical bulletin. 1995;207.

  2. Goldaber KG, Gilstrap LC, Leveno KJ, Dax JS, McIntire DD. Pathologic fetal acidemia. Obstet Gynecol. 1991;78(6):1103–1107.

    CAS  PubMed  Google Scholar 

  3. Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE. A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol. 2008;199(6):587–595.

    CAS  PubMed  Google Scholar 

  4. Winkler CL, Hauth JC, Tucker JM, Owen J, Brumfield CG. Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol. 1991;164(2): 637–641.

    CAS  PubMed  Google Scholar 

  5. Gotsch F, Romero R, Kusanovic JP, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50(3):652–683.

    PubMed  Google Scholar 

  6. Nitsos I, Rees SM, Duncan J, et al. Chronic exposure to intraamniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig. 2006;13(4):239–247.

    CAS  PubMed  Google Scholar 

  7. Duncan J, Cock M, Suzuki K, Scheerlinck JP, Harding R, Rees S. Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. J Soc Gynecol Investig. 2006;13(2): 87–96.

    CAS  PubMed  Google Scholar 

  8. Eklind S, Mallard C, Leverin AL, et al. Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci. 2001;13(6):1101–1106.

    CAS  PubMed  Google Scholar 

  9. Coumans ABC, Middelanis J, Garnier Y, et al. Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic–ischemic brain damage in neonatal rats. Pediatr Res. 2003;53(5):770–775.

    CAS  PubMed  Google Scholar 

  10. Silveira RC, Procianoy RS. Interleukin-6 and tumor necrosis factor-α levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic–ischemic encephalopathy. J Pediatr. 2003; 143(5):625–629.

    CAS  PubMed  Google Scholar 

  11. Chiesa C, Pellegrini G, Panero A, et al. Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest. 2003;33(4):352–358.

    CAS  PubMed  Google Scholar 

  12. Hagberg H, Gilland E, Bona E, et al. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res. 1996;40(4): 603–609.

    CAS  PubMed  Google Scholar 

  13. Guo R, Hou W, Dong Y, Yu Z, Stites J, Weiner CP. Brain injury caused by chronic fetal hypoxemia is mediated by inflammatory cascade activation. Reprod Sci. 2010;17(6):540–548.

    CAS  PubMed  Google Scholar 

  14. Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007;65(12 pt 2):S194–S202.

    PubMed  Google Scholar 

  15. Pierce BT, Pierce LM, Wagner RK, et al. Hypoperfusion causes increased production of interleukin 6 and tumor necrosis factor α in the isolated, dually perfused placental cotyledon. Am J Obstet Gynecol. 2000;183(4):863–867.

    CAS  PubMed  Google Scholar 

  16. Bowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta. 2002;23(4): 257–273.

    CAS  PubMed  Google Scholar 

  17. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    PubMed  PubMed Central  Google Scholar 

  18. Becroft DMO, Thompson JMD, Mitchell EA. Placental chorioamnionitis at term: epidemiology and follow-up in childhood. Pediatr Dev Pathol. 2010;13(4):282–290.

    PubMed  Google Scholar 

  19. Soothill PW, Nicolaides KH, Campbell S. Prenatal asphyxia, hyperlacticaemia, hypoglycaemia, and erythroblastosis in growth retarded fetuses. Br Med J (Clin Res Ed). 1987;294(6579): 1051–1053.

    CAS  Google Scholar 

  20. Chan CJ, Summers KL, Chan NG, Hardy DB, Richardson BS. Cytokines in umbilical cord blood and the impact of labor events in low-risk term pregnancies. Early Hum Dev. 2013;89(12): 1005–1010.

    CAS  PubMed  Google Scholar 

  21. Green LR, Homan J, White SE, Richardson BS. Cardiovascular and metabolic responses to intermittent umbilical cord occlusion in the preterm ovine fetus. J Soc Gynecol Investig. 1999;6(2): 56–63.

    CAS  PubMed  Google Scholar 

  22. Richardson BS, Carmichael L, Homan J, Patrick JE. Electrocortical activity, electroocular activity and breathing movements in fetal sheep with prolonged and graded hypoxemia. Am J Obstet Gynecol. 1992;167(2):553–558.

    CAS  PubMed  Google Scholar 

  23. Gardner DS, Fletcher AJ, Bloomfield MR, Fowden AL, Giussani DA. Effects of prevailing hypoxaemia, acidaemia or hypoglycaemia upon the cardiovascular, endocrine and metabolic responses to acute hypoxaemia in the ovine fetus. J Physiol. 2002;540(pt 1):351–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kallapur SG, Willet KE, Jobe AH, Ikegami M, Bachurski CJ. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):527–536.

    Google Scholar 

  25. Kramer BW, Moss TJ, Willet KE, et al. Dose and time response after intraamniotic endotoxin in preterm lambs. Am J Respir Crit Care Med. 2001;164(6):982–988.

    CAS  PubMed  Google Scholar 

  26. Itskovitz J, LaGamma EF, Rudolph AM. Heart rate and blood pressure responses to umbilical cord compression in fetal lambs with special reference to the mechanism of variable deceleration. Am J Obstet Gynecol. 1983;147(4):451–457.

    CAS  PubMed  Google Scholar 

  27. Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201.

    CAS  PubMed  Google Scholar 

  28. Lau SK, Chu PG, Weiss LM. CD163: a specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol. 2004;122(5):794–801.

    PubMed  Google Scholar 

  29. Burton GJ, Samuel CA, Steven DH. Ultrastructural studies of the placenta of the ewe: phagocytosis of erythrocytes by the chorionic epithelium at the central depression of the cotyledon. Q J Exp Physiol Cogn Med Sci. 1976;61(4):275–286.

    CAS  PubMed  Google Scholar 

  30. Durosier LD, Green G, Batkin I, et al. Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Front Pediatr. 2014;2:38.

    PubMed  PubMed Central  Google Scholar 

  31. Rivolta MW, Stampalija T, Casati D, et al. Acceleration and deceleration capacity of fetal heart rate in an in-vivo sheep model. PLoS One. 2014;9(8):e104193.

    PubMed  PubMed Central  Google Scholar 

  32. Wang X, Durosier LD, Ross MG, Richardson BS, Frasch MG. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. PLoS One. 2014;9(9):e108119.

    PubMed  PubMed Central  Google Scholar 

  33. Ball RH, Parer JT. The physiologic mechanisms of variable decelerations. Am J Obstet Gynecol. 1992;166(6 pt 1):1683–1688; discussion 1688–1689.

    CAS  PubMed  Google Scholar 

  34. Richardson BS, Wakim E, daSilva O, Walton J. Preterm histologic chorioamnionitis: impact on cord gas and pH values and neonatal outcome. Am J Obstet Gynecol. 2006;195(5):1357–1365.

    PubMed  Google Scholar 

  35. Gu W, Jones CT, Parer JT. Metabolic and cardiovascular effects on fetal sheep of sustained reduction of uterine blood flow. J Physiol (Lond). 1985;368:109–129.

    CAS  Google Scholar 

  36. Low JA. The role of blood gas and acid–base assessment in the diagnosis of intrapartum fetal asphyxia. Am J Obstet Gynecol. 1988;159(5):1235–1240.

    CAS  PubMed  Google Scholar 

  37. Richardson BS, Carmichael L, Homan J, Johnston L, Gagnon R. Fetal cerebral, circulatory, and metabolic responses during heart rate decelerations with umbilical cord compression. Am J Obstet Gynecol. 1996;175(4 pt 1):929–936.

    CAS  PubMed  Google Scholar 

  38. Lee SD, Kim MR, Hwang PG, Shim SS, Yoon BH, Kim CJ. Chorionic plate vessels as an origin of amniotic fluid neutrophils. Pathol Int. 2004;54(7):516–522.

    PubMed  Google Scholar 

  39. Nagamatsu T, Schust DJ. Review: the immunomodulatory roles of macrophages at the maternal–fetal interface. Reprod Sci. 2010;17(3):209–218.

    CAS  PubMed  Google Scholar 

  40. Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210(2):153–160.

    CAS  PubMed  Google Scholar 

  41. Kacerovsky M, Cobo T, Hornychova H, et al. Scavenger receptor for hemoglobin in preterm prelabor rupture of membranes pregnancies complicated by histological chorioamnionitis. J Matern Fetal Neonatal Med. 2012;25(11):2291–2297.

    CAS  PubMed  Google Scholar 

  42. Kim J-S, Romero R, Kim MR, et al. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology. 2008;52(4):457–464.

    PubMed  PubMed Central  Google Scholar 

  43. Tang Z, Abrahams VM, Mor G, Guller S. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci. 2011; 1221:103–108.

    PubMed  PubMed Central  Google Scholar 

  44. Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML. Mast cells as early responders in the regulation of acute blood–brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab. 2010;30(4):689–702.

    PubMed  PubMed Central  Google Scholar 

  45. Purcell WM, Hanahoe TH. A novel source of mast cells: the human placenta. Agents Actions. 1991;33(1–2):8–12.

    CAS  PubMed  Google Scholar 

  46. Lieberman P. The basics of histamine biology. Ann Allergy Asthma Immunol. 2011;106(2 suppl):S2–S5.

    PubMed  Google Scholar 

  47. Romero R, Kusanovic JP, Muñoz H, Gomez R, Lamont RF, Yeo L. Allergy-induced preterm labor after the ingestion of shellfish. J Matern Fetal Neonatal Med. 2010;23(4):351–359.

    PubMed  PubMed Central  Google Scholar 

  48. Prout AP, Frasch MG, Veldhuizen RAW, Hammond R, Ross MG, Richardson BS. Systemic and cerebral inflammatory response to umbilical cord occlusions with worsening acidosis in the ovine fetus. Am J Obstet Gynecol. 2010;202(1):82.e1–e9.

    Google Scholar 

  49. Grigsby PL, Hirst JJ, Scheerlinck J-P, Phillips DJ, Jenkin G. Fetal responses to maternal and intra-amniotic lipopolysaccharide administration in sheep. Biol Reprod. 2003;68(5):1695–1702.

    CAS  PubMed  Google Scholar 

  50. Nitsos I, Newnham JP, Rees SM, Harding R, Moss TJ. The impact of chronic intrauterine inflammation on the physiologic and neurodevelopmental consequences of intermittent umbilical cord occlusion in fetal sheep. Reprod Sci. 2014;21(5):658–670.

    PubMed  PubMed Central  Google Scholar 

  51. Newnham JP, Moss TJM, Kramer BW, Nitsos I, Ikegami M, Jobe AH. The fetal maturational and inflammatory responses to different routes of endotoxin infusion in sheep. Am J Obstet Gynecol. 2002;186(5):1062–1068.

    CAS  PubMed  Google Scholar 

  52. Nelson KB, Grether JK. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol. 1998;179(2):507–513.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan S. Richardson MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, A., Matushewski, B., Cao, M. et al. The Ovine Fetal and Placental Inflammatory Response to Umbilical Cord Occlusions With Worsening Acidosis. Reprod. Sci. 22, 1409–1420 (2015). https://doi.org/10.1177/1933719115580994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115580994

Keywords

Navigation