Skip to main content

Advertisement

Log in

Serum MicroRNAs as Diagnostic Biomarkers for Macrosomia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Macrosomia is defined as an infant’s birth weight of more than 4000 g. Although microRNAs (miRNAs) have been implicated in the pathogenesis of various diseases, the associations between serum miRNAs and macrosomia have been rarely reported.

Methodology

We used the Taqman Low Density Array followed by quantitative reverse transcriptase polymerase chain reaction assays to screen for miRNAs associated with macrosomia using serum samples collected 1 week before delivery.

Results

Profiling results showed that 1 miRNA was significantly upregulated and 10 miRNAs were significantly downregulated in serum samples of macrosomia (ΔΔCt > 3-fold). The expression levels of miR-21 were significantly decreased in macrosomia as compared to the controls in the third trimester. Receiver operating characteristic (ROC) curve analyses showed that the area under the ROC curve for miR-21 was 67.7% (sensitivity = 66.7% and specificity = 70.0%).

Conclusions

miR-21 in maternal serum is differentially expressed between macrosomia and controls, and miR-21 could be used as a candidate biomarker to predict macrosomia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Y, Zhang J, Lu X, Xi W, Li Z. Secular trends of macrosomia in southeast China, 1994–2005. BMC Public Health. 2011;11:818.

    Article  Google Scholar 

  2. Koyanagi A, Zhang J, Dagvadorj A, et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet. 2013;381(9865):476–483.

    Article  Google Scholar 

  3. Xie RH, Cao H, Hong B, Sprague AE, Walker M, Wen SW. Occurrence and predictors of vacuum and forceps used sequentially for vaginal birth. J Obstet Gynaecol Can. 2013;35(4): 317–322.

    Article  Google Scholar 

  4. Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525–542.

    Article  CAS  Google Scholar 

  5. Li XY, Jiang Y, Hu N, et al. [Prevalence and characteristic of overweight and obesity among adults in China, 2010]. Zhonghua Yu Fang YiXue Za Zhi. 2012;46(8):683–686.

    PubMed  Google Scholar 

  6. Cui Z, Huxley R, Wu Y, Dibley MJ. Temporal trends in overweight and obesity of children and adolescents from nine Provinces in China from 1991–2006. Int J Pediatr Obes. 2010;5(5): 365–374.

    Article  Google Scholar 

  7. Gu S, An X, Fang L, et al. Risk factors and long-term health consequences of macrosomia: a prospective study in Jiangsu Province, China. J Biomed Res. 2012;26(4):235–240.

    Article  Google Scholar 

  8. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/ obesity: a systematic review and meta-analysis. PLoS One. 2013; 8(4):e61627.

    Article  CAS  Google Scholar 

  9. Li S, Rosenberg L, Palmer JR, Phillips GS, Heffner LJ, Wise LA. Central adiposity and other anthropometric factors in relation to risk of macrosomia in an African American population. Obesity (Silver Spring). 2013;21(1):178–184.

    Article  Google Scholar 

  10. Grundt JH, Nakling J, Eide GE, Markestad T. Possible relation between maternal consumption of added sugar and sugar-sweetened beverages and birth weight–time trends in a population. BMC Public Health. 2012;12:901.

    Article  Google Scholar 

  11. Silveira PP, Portella AK, Goldani MZ, Barbieri MA. Developmental origins of health and disease (DOHaD). J Pediatr (Rio J). 2007; 83(6):494–504.

    Article  Google Scholar 

  12. Lillycrop KA. Effect of maternal diet on the epigenome: implications for human metabolic disease. Proc Nutr Soc. 2011;70(1):64–72.

    Article  Google Scholar 

  13. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54(3):482–490.

    Article  CAS  Google Scholar 

  14. Zhao C, Dong J, Jiang T, et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One. 2011;6:e23925.

    Article  CAS  Google Scholar 

  15. Enquobahrie DA, Abetew DF, Sorensen TK, et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178. e112–e121.

    Article  CAS  Google Scholar 

  16. Jiang H, Wu W, Zhang M, et al. Aberrant upregulation of miR-21 in placental tissues of macrosomia. J Perinatol. 2014;34(9):658–663.

    Article  CAS  Google Scholar 

  17. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008; 141(5):672–675.

    Article  Google Scholar 

  18. Hu Z, Chen X, Zhao Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28(10):1721–1726.

    Article  Google Scholar 

  19. Schrauder MG, Strick R, Schulz-Wendtland R, et al. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One. 2012;7(1):e29770.

    Article  CAS  Google Scholar 

  20. Zhu C, Ren C, Han J, et al. A five-micro RNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110(9):2291–2299.

    Article  CAS  Google Scholar 

  21. Catalano PM. Management of obesity in pregnancy. Obstet Gynecol. 2007;109(2 pt 1):419–433.

    Article  Google Scholar 

  22. Canavan TP, Hill LM. Sonographic biometry in the early third trimester: a comparison of parameters to predict macrosomia at birth [published online September 5, 2014]. J Clin Ultrasound. 2014. doi: 10.1002/jcu.22230.

    Article  Google Scholar 

  23. Su L, Zhao S, Zhu M, Yu M. Differential expression of microRNAs in porcine placentas on days 30 and 90 of gestation. Reprod Fertil Dev. 2010;22(8):1175–1182.

    Article  CAS  Google Scholar 

  24. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518.

    Article  Google Scholar 

  25. Xie Y, Todd NW, Liu Z, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010;67(2):170–176.

    Article  Google Scholar 

  26. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  Google Scholar 

  27. Shen J, Todd NW, Zhang H, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest. 2011; 91(4):579–587.

    Article  CAS  Google Scholar 

  28. Barad O, Meiri E, Avniel A, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004;14(12): 2486–2494.

    Article  CAS  Google Scholar 

  29. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–773.

    Article  CAS  Google Scholar 

  30. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39–53.

    Article  CAS  Google Scholar 

  31. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–1966.

    Article  CAS  Google Scholar 

  32. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–2261.

    Article  CAS  Google Scholar 

  33. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–817.

    Article  CAS  Google Scholar 

  34. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol. 2012;227(1):183–193.

    Article  CAS  Google Scholar 

  35. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One. 2011;6(6):e21210.

    Article  CAS  Google Scholar 

  36. Mouillet JF, Chu T, Hubel CA, Nelson DM, Parks WT, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010;31(9): 781–784.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wen, Y., Hu, L. et al. Serum MicroRNAs as Diagnostic Biomarkers for Macrosomia. Reprod. Sci. 22, 664–671 (2015). https://doi.org/10.1177/1933719114561557

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114561557

Keywords

Navigation