Skip to main content
Log in

Effects of Fetal Sex on Expression of the (Pro)renin Receptor and Genes Influenced by its Interaction With Prorenin in Human Amnion

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Males are more likely to be born preterm than females. The causes are unknown, but it is suggested that intrauterine tissues regulate fetal growth and survival in a sex-specific manner. We postulated that prorenin binding to its prorenin/renin receptor receptor (ATP6AP2) would act in a fetal sex-specific manner in human amnion to regulate the expression of promyelocytic zinc finger, a negative regulator of ATP6AP2 expression as well as 2 pathways that might influence the onset of labor, namely transforming growth factor β1 (TGFB1) and prostaglandin endoperoxide synthase 2 (PTGS2). Our findings demonstrate that there are strong interactions between prorenin, ATP6AP2, and TGFB1 and that this system has a greater capacity in female amnion to stimulate profibrotic pathways, thus maintaining the integrity of the fetal membranes. In contrast, glucocorticoids or other factors independent of the prorenin/prorenin receptor pathway may be important regulators of PTGS2 in human pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vatten LJ, Skjaerven R. Offspring sex and pregnancy outcome by length of gestation. Early Hum Dev. 2004;76(1):47–54.

    Article  Google Scholar 

  2. Cooperstock M, Campbell J. Excess males in preterm birth: interactions with gestational age, race, and multiple birth. Obstet Gynecol. 1996;88(2):189–193.

    Article  CAS  Google Scholar 

  3. Melamed N, Yogev Y, Glezerman M. Fetal gender and pregnancy outcome. J Matern Fetal Neonatal Med. 2010;23(4):338–344.

    Article  Google Scholar 

  4. Zeitlin J, Saurel-Cubizolles M-J, de Mouzon J, et al. Fetal sex and preterm birth: are males at greater risk? Hum Reprod. 2002; 17(10):2762–2768.

    Article  Google Scholar 

  5. Brettell R, Yeh PS, Impey LW. Examination of the association between male gender and preterm delivery. Eur J Obstet Gynecol Reprod Biol. 2008;141(2):123–126.

    Article  Google Scholar 

  6. Lieberman E, Lang JM, Cohen AP, Frigoletto FD Jr, Acker D, Rao R. The association of fetal sex with the rate of cesarean section. Am J Obstet Gynecol. 1997;176(3):667–671.

    Article  CAS  Google Scholar 

  7. Byrne J, Warburton D. Male excess among anatomically normal fetuses in spontaneous abortions. Am J Med Genet. 1987;26(3): 605–611.

    Article  CAS  Google Scholar 

  8. Mizuno R. The male/female ratio of fetal deaths and births in Japan. Lancet. 2000;356(9231):738–739.

    Article  CAS  Google Scholar 

  9. Engel PJ, Smith R, Brinsmead MW, Bowe SJ, Clifton VL. Male sex and pre-existing diabetes are independent risk factors for stillbirth. Aust NZ J Obstet Gynaecol. 2008;48(4):375–383.

    Article  Google Scholar 

  10. Smith GC. Sex, birth weight, and the risk of stillbirth in Scotland, 1980–1996. Am J Epidemiol. 2000;151(6):614–619.

    Article  CAS  Google Scholar 

  11. Skinner SL, Lumbers ER, Symonds EM. Renin concentration in human fetal and maternal tissues. Am J Obstet Gynecol. 1968; 101(4):529–533.

    Article  CAS  Google Scholar 

  12. Shaw KJ, Do YS, Kjos S, et al. Human decidua is a major source of renin. J Clin Invest. 1989;83(6):2085–2092.

    Article  CAS  Google Scholar 

  13. Pringle KG, Zakar T, Yates D, Mitchell CM, Hirst JJ, Lumbers ER. Molecular evidence of a (pro)renin/(pro)renin receptor system in human intrauterine tissues in pregnancy and its association with PGHS-2. J Renin Angiotensin Aldosterone Syst. 2011;12(3):304–310.

    Article  CAS  Google Scholar 

  14. Wang Y, Pringle KG, Sykes SD, et al. Effects of fetal sex on the expression of the renin-angiotensin system in human decidua. Endocrinology. 2012;153(1):462–468.

    Article  CAS  Google Scholar 

  15. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002; 109(11):1417–1427.

    Article  CAS  Google Scholar 

  16. He M, Zhang L, Shao Y, et al. Inhibition of renin/prorenin receptor attenuated mesangial cell proliferation and reduced associated fibrotic factor release. Eur J Pharmacol. 2009; 606(1–3):155–161.

    Article  CAS  Google Scholar 

  17. Zhang J, Gu C, Noble NA, Border WA, Huang Y. Combining angiotensin II blockade and renin receptor inhibition results in enhanced antifibrotic effect in experimental nephritis. Am J Physiol Renal Physiol. 2011;301(4):F723–F732.

    Article  CAS  Google Scholar 

  18. Song W, Zhang Y, Jia C, et al. Up-regulation of TGF-beta via the activation of extracellular signal-regulated kinase 1 and 2 induced by prorenin in human renal mesangial cells. Mol Med Rep. 2012; 5(1):223–227.

    PubMed  CAS  Google Scholar 

  19. Clavreul N, Sansilvestri-Morel P, Magard D, Verbeuren TJ, Rupin A. (Pro)renin promotes fibrosis gene expression in HEK cells through a Nox4-dependent mechanism. Am J Physiol Renal Physiol. 2011;300(6):F1310–1318.

    Article  CAS  Google Scholar 

  20. Mitchell MD, Edwin SS, Pollard JK, Trautman MS. Renin stimulates decidual prostaglandin production via a novel mechanism that is independent of angiotensin II formation. Placenta. 1996; 17(5–6):299–305.

    Article  CAS  Google Scholar 

  21. Kaneshiro Y, Ichihara A, Takemitsu T, et al. Increased expression of cyclooxygenase-2 in the renal cortex of human prorenin receptor gene-transgenic rats. Kidney Int. 2006; 70(4):641–646.

    Article  CAS  Google Scholar 

  22. Schefe JH, Menk M, Reinemund J, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 2006;99(12):1355–1366.

    Article  CAS  Google Scholar 

  23. Fahnenstich J, Nandy A, Milde-Langosch K, Schneider-Merck T, Walther N, Gellersen B. Promyelocytic leukaemia zinc finger protein (PLZF) is a glucocorticoid- and progesterone-induced transcription factor in human endometrial stromal cells and myometrial smooth muscle cells. Mol Hum Reprod. 2003;9(10): 611–623.

    Article  CAS  Google Scholar 

  24. Mitchell C, Johnson R, Bisits A, Hirst J, Zakar T. PTGS2 (prostaglandin endoperoxide synthase-2) expression in term human amnion in vivo involves rapid mRNA turnover, polymerase-II 5’-pausing, and glucocorticoid transrepression. Endocrinology. 2011;152(5):2113–2122.

    Article  CAS  Google Scholar 

  25. Johnson RF, Mitchell CM, Clifton V, Zakar T. Regulation of 15-hydroxyprostaglandin dehydrogenase (PGDH) gene activity, messenger ribonucleic acid processing, and protein abundance in the human chorion in late gestation and labor. J Clin Endocrinol Metab. 2004;89(11):5639–5648.

    Article  CAS  Google Scholar 

  26. Sykes SD, Pringle KG, Zhou A, Dekker GA, Roberts CT, Lumbers ER. The balance between human maternal plasma angiotensin II and angiotensin 1–7 levels in early gestation pregnancy is influenced by fetal sex[published online February 25, 2013]. J Renin Angiotensin Aldosterone Syst. 2013.

  27. Hsueh WA, Luetscher JA, Carlson EJ, Grislis G, Fraze E, McHargue A. Changes in active and inactive renin throughout pregnancy. J Clin Endocrinol Metab. 1982;54(5):1010–1016.

    Article  CAS  Google Scholar 

  28. Skinner SL, Cran EJ, Gibson R, Taylor R, Walters WA, Catt KJ. Angiotensins I and II, active and inactive renin, renin substrate, renin activity, and angiotensinase in human liquor amnii and plasma. Am J Obstet Gynecol. 1975;121(5):626–630.

    Article  CAS  Google Scholar 

  29. Gilsbach R, Kouta M, Bonisch H, Bruss M. Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. Biotechniques. 2006;40(2):173–177.

    Article  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[delta][delta]CT method. Methods. 2001;25(4):402–408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsty G. Pringle BSc, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pringle, K.G., Conquest, A., Mitchell, C. et al. Effects of Fetal Sex on Expression of the (Pro)renin Receptor and Genes Influenced by its Interaction With Prorenin in Human Amnion. Reprod. Sci. 22, 750–757 (2015). https://doi.org/10.1177/1933719114561555

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114561555

Keywords

Navigation