Skip to main content
Log in

Sperm Proteome: What Is on the Horizon?

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

As the mammalian spermatozoa transcends from the testis to the end of the epididymal tubule, the functionally incompetent spermatozoa acquires its fertilizing capability. Molecular changes in the spermatozoa at the posttesticular level concern qualitative and quantitative modifications of proteins along with their sugar moieties and membranous lipids mostly associated with motility, egg binding, and penetration processes. Proteomic studies have identified numerous sperm-specific proteins, and recent reports have provided a further understanding of their function with respect to male fertility. High-throughput techniques such as mass spectrometry have shown drastic potential for the identification and study of sperm proteins. In fact, compelling evidence has provided that proteins are critically important in cellular remodeling event and that aberrant expression is associated with pronounced defects in sperm function. This review highlights the posttesticular functional transformation in the epididymis and female reproductive tract with due emphasis on proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behrouzi B, Kenigsberg S, Alladin N, et al. Evaluation of potential protein biomarkers in patients with high sperm DNA damage. Syst Biol Reprod Med. 2013;59(3):153–163.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. A Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva, Switzerland: WHO Press; 2010.

    Google Scholar 

  3. Cooper TG, Noonan E, von Eckardstein S, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–245.

    Article  PubMed  Google Scholar 

  4. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79(1):16–22.

    Article  PubMed  Google Scholar 

  5. Gatti JL, Castella S, Dacheux F, et al. Post-testicular sperm environment and fertility. Anim Reprod Sci. 2004;82–83:321–339.

    Article  PubMed  Google Scholar 

  6. Yoshii T, Kuji N, Komatsu S, et al. Fine resolution of human sperm nucleoproteins by two-dimensional electrophoresis. Mol Hum Reprod. 2005;11(9):677–681.

    Article  CAS  PubMed  Google Scholar 

  7. de Mateo S, Castillo J, Estanyol JM, Ballescà JL, Oliva R. Proteomic characterization of the human sperm nucleus. Proteomics. 2011;11(13):2714–2726.

    Article  PubMed  CAS  Google Scholar 

  8. Castillo J, Amaral A, Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology. 2014;2(3):326–338.

    Article  CAS  PubMed  Google Scholar 

  9. Jassim A, Gillott DJ, al-Zuhdi Y, Gray A, Foxon R, Bottazzo GF. Isolation and biochemical characterization of the human sperm tail fibrous sheath. Hum Reprod. 1992;7(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao C, Huo R, Wang FQ, Lin M, Zhou ZM, Sha JH. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril. 2007;87(2):436–438.

    Article  CAS  PubMed  Google Scholar 

  11. Wang G, Guo Y, Zhou T, et al. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics. 2013;79:114–122.

    Article  CAS  PubMed  Google Scholar 

  12. Ashrafzadeh A, Karsani SA, Nathan S. Mammalian sperm fertility related proteins. Int J Med Sci. 2013;10(12):1649–1657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Baker MA. The omics revolution and our understanding of sperm cell biology. Asian J Androl. 2011;13(1):6–10.

    Article  CAS  PubMed  Google Scholar 

  14. Oliva R, de Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9(4):1004–1017.

    Article  CAS  PubMed  Google Scholar 

  15. Ijiri TW, Merdiushev T, Cao W, Gerton GL. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics. 2011;11(20):4047–4062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Secciani F, Bianchi L, Ermini L, et al. Protein profile of capacitated versus ejaculated human sperm. J Proteome Res. 2009; 8(7):3377–3389.

    Article  CAS  PubMed  Google Scholar 

  17. Xu W, Hu H, Wang Z, et al. Proteomic characteristics of spermatozoa in normozoospermic patients with infertility. J Proteomics. 2012;75(17):5426–5436.

    Article  CAS  PubMed  Google Scholar 

  18. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312(5771):212–217.

    Article  CAS  PubMed  Google Scholar 

  19. Cox J, Mann M. Is proteomics the new genomics? Cell. 2007; 130(3):395–398.

    Article  CAS  PubMed  Google Scholar 

  20. Baker MA, Witherdin R, Hetherington L, Cunningham-Smith K, Aitken RJ. Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis. Proteomics. 2005;5(4):1003–1012.

    Article  CAS  PubMed  Google Scholar 

  21. Martínez-Heredia J, Estanyol JM, Ballescà JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006; 6(15):4356–4369.

    Article  PubMed  CAS  Google Scholar 

  22. de Mateo S, Martínez-Heredia J, Estanyol JM, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7(23):4264–4277. Erratum in: Proteomics. 2008;8:4833. Domíguez-Fandos, David [corrected to Domínguez-Fandos, David].

    Article  PubMed  Google Scholar 

  23. Johnston DS, Wooters J, Kopf GS, Qiu Y, Roberts KP. Analysis of the human sperm proteome. Ann N Y Acad Sci. 2005;1061: 190–202.

    Article  CAS  PubMed  Google Scholar 

  24. Baker MA, Reeves G, Hetherington L, Müller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1(5):524–532.

    Article  CAS  PubMed  Google Scholar 

  25. Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics. 2009; 6(6):691–705.

    Article  CAS  PubMed  Google Scholar 

  26. Findlay GD, Swanson WJ. Proteomics enhances evolutionary and functional analysis of reproductive proteins. Bioessays. 2010; 32(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  27. Hamada A, Sharma R, Du Plessis SS, et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99(5): 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  28. Gilany K, Lakpour N, Vafakhah M, Sadeghi MR. The profile of human sperm proteome; a mini-review. J Reprod Infertil. 2011; 12(3):193–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Milardi D, Grande G, Vincenzoni F, Castagnola M, Marana R. Proteomics of human seminal plasma: identification of biomarker candidates for fertility and infertility and the evolution of technology. Mol Reprod Dev. 2013;80(5):350–357.

    Article  CAS  PubMed  Google Scholar 

  30. Batruch I, Smith CR, Mullen BJ, et al. Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility. J Proteome Res. 2012; 11(3):1503–1511.

    Article  CAS  PubMed  Google Scholar 

  31. Miescher F. Das Protamin—Eine neue organische Basis aus denSamenf—den des Rheinlachses. Ber Dtsch Chem Ges. 1874;7(1):376.

    Article  Google Scholar 

  32. Naaby-Hansen S. Electrophoretic map of acidic and neutral human spermatozoal proteins. J Reprod Immunol. 1990;17(3): 167–185.

    Article  CAS  PubMed  Google Scholar 

  33. Naaby-Hansen S, Flickinger CJ, Herr JC. Two dimensional gel electrophoretic analysis of vectorially labeled surface proteins of human spermatozoa. Biol Reprod. 1997;56(3):771–787.

    Article  CAS  PubMed  Google Scholar 

  34. Li LW, Fan LQ, Zhu WB, et al. Establishment of a high-resolution 2-D reference map of human spermatozoa proteins from 12 fertile sperm-bank donors. Asian J Androl. 2007;9(3): 321–329.

    Article  CAS  PubMed  Google Scholar 

  35. Frayne J, Hall L. The gene for the human tMDC I sperm surface protein is non-functional: implications for its proposed role in mammalian sperm–egg recognition. Biochem J. 1998;334(pt 1):171–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolfsberg TG, White JM. ADAMs in fertilization and development. Dev Biol. 1996;180(2):389–401.

    Article  CAS  PubMed  Google Scholar 

  37. Bronson RA, Fusi FM, Calzi F, Doldi N, Ferrari A. Evidence that a functional fertilin-like ADAM plays a role in human sperm–oolemmal interactions. Mol Hum Reprod. 1999;5(5):433–440.

    Article  CAS  PubMed  Google Scholar 

  38. Frayne J, Hurd EA, Hall L. Human tMDC III: a sperm protein with a potential role in oocyte recognition. Mol Hum Reprod. 2002;8(9):817–822.

    Article  CAS  PubMed  Google Scholar 

  39. Banerjee M, Chowdhury M. Induction of capacitation in human spermatozoa in vitro by an endometrial sialic acid-binding protein. Hum Reprod. 1995;10(12):3147–3153.

    Article  CAS  PubMed  Google Scholar 

  40. Yin L, Chung CM, Huo R, et al. A sperm GPI-anchored protein elicits sperm–cumulus cross-talk leading to the acrosome reaction. Cell Mol Life Sci. 2009;66(5):900–908.

    Article  CAS  PubMed  Google Scholar 

  41. Sharma R, Agarwal A, Mohanty G, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013; 11:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Naaby-Hansen S, Herr JC. Heat shock proteins on the human sperm surface. J Reprod Immunol. 2010;84(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  43. Cedenho AP, Lima SB, Cenedeze MA, Spaine DM, Ortiz V, Oehninger S. Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum Reprod. 2006;21(7):1791–1794.

    Article  CAS  PubMed  Google Scholar 

  44. Ergur AR, Dokras A, Giraldo JL, Habana A, Kovanci E, Huszar G. Sperm maturity and treatment choice of in vitro fertilization (IVF) or intracytoplasmic sperm injection: diminished sperm HspA2 chaperone levels predict IVF failure. Fertil Steril. 2002; 77(5):910–918.

    Article  PubMed  Google Scholar 

  45. Huszar G, Stone K, Dix D, Vigue L. Putative creatine kinase M-isoform in human sperm is identified as the 70-kilodalton heat shock protein HspA2. Biol Reprod. 2000;63(3):925–932.

    Article  CAS  PubMed  Google Scholar 

  46. Lima SB, Cenedeze MA, Bertolla RP, Filho PA, Oehninger S, Cedenho AP. Expression of the HSPA2 gene in ejaculated spermatozoa from adolescents with and without varicocele. Fertil Steril. 2006;86(6):1659–963.

    Article  CAS  PubMed  Google Scholar 

  47. Liao TT, Xiang Z, Zhu WB, Fan LQ. Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl. 2009;11(6):683–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu R, Guo C, Tao XQ, et al. Protective effect of Annexin 5 on human sperm membrane and DNA integrity. Zhonghua Nan Ke Xue. 2011;17(1):17–20.

    CAS  PubMed  Google Scholar 

  49. Wolfsberg TG, Primakoff P, Myles DG, White JM. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloproteinase domain: multipotential functions in cell-cell and cell matrix interactions. J Cell Biol. 1995;131(2):275–278.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu Y, Wu Y, Jin K, et al. Differential proteomic profiling in human spermatozoa that did or did not result in pregnancy via IVF and AID [published online October 1, 2013.]. Proteomics Clin Appl. 2013.

  51. Gur Y, Breitbart H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 2006; 20(4):411–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Lamirande E, Yoshida K, Yoshiike TM, Iwamoto T, Gagnon C. Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J Androl. 2001;22(4):672–679.

    PubMed  Google Scholar 

  53. Siva AB, Kameshwari DB, Singh V, et al. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod. 2010;16(7):452–462.

    Article  CAS  PubMed  Google Scholar 

  54. Martínez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballesca JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2008;23(4):783–791.

    Article  PubMed  CAS  Google Scholar 

  55. Intasqui P, Camargo M, Del Giudice PT, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet. 2013;30(9):1187–1202.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nixon B, Bielanowicz A, McLaughlin EA, Tanphaichitr N, Ensslin MA, Aitken RJ. Composition and significance of detergent resistant membranes in mouse spermatozoa. J Cell Physiol. 2009;218(1):122–134.

    Article  CAS  PubMed  Google Scholar 

  57. Lefièvre L, Chen Y, Conner SJ, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7(17):3066–3084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ellerman DA, Da Ros VG, Cohen DJ, Busso D, Morgenfeld MM, Cuasnicú PS. Expression and structure–function analysis of de, a sperm cysteine-rich secretory protein that mediates gamete fusion. Biol Reprod. 2002;67(4):1225–1231.

    Article  CAS  PubMed  Google Scholar 

  59. Salemi M, Calogero AE, Di Benedetto D, et al. Expression of SPANX proteins in human-ejaculated spermatozoa and sperm precursors. Int J Androl. 2004;27(3):134–139.

    Article  CAS  PubMed  Google Scholar 

  60. Westbrook VA, Schoppee PD, Vanage GR, et al. Hominoid-specific SPANXA/D genes demonstrate differential expression in individuals and protein localization to a distinct nuclear envelope domain during spermatid morphogenesis. Mol Hum Reprod. 2006;12(11):703–716.

    Article  CAS  PubMed  Google Scholar 

  61. Hansen S, Eichler EE, Fullerton SM, Carrell D. SPANX gene variation infertile and infertile males. Syst Biol Reprod Med. 2010; 55:18–26.

    Article  PubMed  Google Scholar 

  62. Amaral A, Ramalho-Santos J, St John JC. The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod. 2007;22(6):1585–1596.

    Article  CAS  PubMed  Google Scholar 

  63. Sousa AP, Amaral A, Baptista M, et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS One. 2011;6(3): e18112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chemes HE, Brugo S, Zanchetti F, Carrere C, Lavieri JC. Dysplasia of the fibrous sheath: an ultrastructural defect of human spermatozoa associated with sperm immotility and primary sterility. Fertil Steril. 1987;48(4):664–669.

    Article  CAS  PubMed  Google Scholar 

  65. Naaby-Hansen S. Functional and immunological analysis of the human sperm proteome. Dan Med J. 2012;59(4):B4414.

    PubMed  Google Scholar 

  66. Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics. 2013;13(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  67. Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD, Eddy EM. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev Biol. 2002;248(2):331–334.

    Article  CAS  PubMed  Google Scholar 

  68. Muratori M, Luconi M, Marchiani S, Forti G, Baldi E. Molecular markers of human sperm functions. Int J Androl. 2009;32(1): 25–45.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Wu J, Huo R, et al. ERp57 is a potential biomarker for human fertilization capability. Mol Hum Reprod. 2007;13(9): 633–639.

    Article  CAS  PubMed  Google Scholar 

  70. Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2014;20(1): 40–62.

    Article  CAS  PubMed  Google Scholar 

  71. Pixton KL, Deeks ED, Flesch FM, et al. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod. 2004;19(6):1438–1447.

    Article  PubMed  Google Scholar 

  72. Hosseinifar H, Gourabi H, Salekdeh GH, et al. Study of sperm protein profile in men with and without varicocele using two-dimensional gel electrophoresis. Urology. 2013;81(2):293–300.

    Article  PubMed  Google Scholar 

  73. Chan CC, Sun GH, Shui HA, Wu GJ. Differential spermatozoal protein expression profiles in men with varicocele compared to control subjects: upregulation of heat shock proteins 70 and 90 in varicocele. Urology. 2013;81(6):1379.e1-e8.

    Article  Google Scholar 

  74. de Yebra L, Ballescá JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–759.

    Article  PubMed  Google Scholar 

  75. Li J, Liu F, Wang H, et al. Systematic mapping and functional analysis of a family of human epididymal secretory sperm-located proteins. Mol Cell Proteomics. 2010;9(11):2517–2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li J, Liu F, Liu X, et al. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol Cell Proteomics. 2011;10(3):M110.004630.

    Article  CAS  Google Scholar 

  77. Brewis IA, Gadella BM. Sperm surface proteomics: from protein lists to biological function. Mol Hum Reprod. 2010;16(2):68–79.

    Article  CAS  PubMed  Google Scholar 

  78. Belleannee C, Belghazi M, Labas V, et al. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics. 2011;11(10):1952–1964.

    Article  CAS  PubMed  Google Scholar 

  79. Wang L, Chen W, Zhao C, et al. The role of ezrin-associated protein network in human sperm capacitation. Asian J Androl. 2010; 12(5):667–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shetty J, Naaby-Hansen S, Shibahara H, Bronson R, Flickinger CJ, Herr JC. Human sperm proteome: immunodominant sperm surface antigens identified with sera from infertile men and women. Biol Reprod. 1999;61(1):61–69.

    Article  CAS  PubMed  Google Scholar 

  81. Domagala A, Pulido S, Kurpisz M, Herr JC. Application of proteomic methods for identification of sperm immunogenic antigens. Mol Hum Reprod. 2007;13(7):437–444.

    Article  PubMed  CAS  Google Scholar 

  82. Shetty J, Diekman AB, Jayes FC, et al. Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates. Electrophoresis. 2001;22(14):3053–3066.

    Article  CAS  PubMed  Google Scholar 

  83. Flesch FM, Voorhout WF, Colenbrander B, van Golde LM, Gadella BM. Use of lectins to characterize plasma membrane preparations from boar spermatozoa: a novel technique for monitoring membrane purity and quantity. Biol Reprod. 1998;59(6): 1530–1539.

    Article  CAS  PubMed  Google Scholar 

  84. Runnebaum IB, Schill WB, Topfer-Petersen E. ConA-binding proteins of the sperm surface are conserved through evolution and in sperm maturation. Andrologia. 1995;27(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  85. van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM. Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod. 2005;11(8):583–590.

    Article  PubMed  CAS  Google Scholar 

  86. Tsai PS, De Vries KJ, De Boer-Brouwer M, et al. Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells. Mol Membr Biol. 2007;24(4): 313–324.

    Article  CAS  PubMed  Google Scholar 

  87. O’Rand MG. Changes of sperm surface properties correlated with capacitation. In: Fawcett DW, Bedford JM, eds. The Spermatozoon. Urban and Schwarzenberg, Baltimore-Munich: Alan R. Liss Inc; 1979:195–204.

    Google Scholar 

  88. Burks DJ, Carballada R, Moore HD, Saling PM. Interaction of tyrosine kinase from human sperm with the zona pellucida at fertilization. Science. 1995;269(5220):83–86.

    Article  CAS  PubMed  Google Scholar 

  89. Roten R, Paz GF, Hamonnai ZT, Kalina M, Naor Z. Protein kinase C is present in human sperm: possible role of flagellar motility. Proc Natl Acad Sci U S A.1990;87(18):7305–7308.

    Article  Google Scholar 

  90. Klentzeris LD, Fishel S, McDermott H, Dowell K, Hall J, Green S. A positive correlation between expression of beta-1 integrin cell adhesion molecules and fertilizing ability of human spermatozoa in vitro. Mol Hum Reprod. 1995;10(3):728–733.

    Article  CAS  Google Scholar 

  91. Glander HJ, Schaller J, Weber W, Alexander H, Haake KW. In vitro fertilization: increased VLA (very late antigen and fibronectin after acrosome reaction. Arch Androl. 1996;36(3): 177–1785.

    Article  CAS  PubMed  Google Scholar 

  92. Reddy KVR, Meherji PK, Shahani SK. Integrin cell adhesion molecules on human spermatozoa. Ind J Exp Biol. 1998;36(5): 450–463.

    Google Scholar 

  93. Rajeev SK, Reddy KVR. Integrins and disintegrins: the candidate molecular players in sperm-egg interaction. Ind J Exp Biol. 2000; 38(5):1217–1221.

    Google Scholar 

  94. Wennemuth G, Meinhardt A, Mallidis C, et al. Assessment of fibronectin as a potential new clinical tool in andrology. Andrologia. 2001;33(1):43–46.

    Article  CAS  PubMed  Google Scholar 

  95. Sabeur K, Cherr GN, Yudin AI, Primakoff P, Li MW, Overstreet JW. The PH-20 protein in human spermatozoa. J Androl. 1997; 18(2):151–158.

    CAS  PubMed  Google Scholar 

  96. Naz RK, Ahmad K, Kumar G. Presence and role of c-myc protooncogene in product in mammalian sperm cell function. Biol Reprod. 1991;44(5):842–850.

    Article  CAS  PubMed  Google Scholar 

  97. Naz RK, Ahmad K, Kaplan P. Expression and function of rasprotooncogene proteins in human sperm cells. J Cell Sci. 1992; 102(pt 3):487–494.

    CAS  PubMed  Google Scholar 

  98. Lea IA, Adoyo P, O’Rand MG. Autoimmimogenicity of the human sperm protein Sp17 in vasectomized men and identification of linear B cell epitopes. Fertil Steril. 1997;67(2):355–361.

    Article  CAS  PubMed  Google Scholar 

  99. Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci. 2006;119(pt 15):3182–3192.

    Article  CAS  PubMed  Google Scholar 

  100. Lee CYG, Liu MS, Su MW, Zhu JB. Studies of sperm antigens reactive to HS-11 and HS-63 monoclonal antibodies. In: Alexander NJ, Griffin D, Spieler JM, Waites GMH eds. Gamete Interaction: Prospects for Immunocontraception. New York: Wiley-Liss Inc; 1990:37–52.

    Google Scholar 

  101. Caron CP, Saling PM. Sperm antigens and immunological interference of fertilization. In: Wassarman PM, ed. Elements of Mammalian Fertilization. Boca Raton, FL: CRC Press;1991: 147–176.

    Google Scholar 

  102. Bohring C, Krause W. The characterization of human spermatozoa membrane proteins — surface antigens and immunological infertility. Electrophoresis. 1999;20(4–5):971–976.

    Article  CAS  PubMed  Google Scholar 

  103. Bhande S, Naz RK. Molecular identities of human sperm proteins reactive with antibodies in sera of immunoinfertile women. Mol Reprod Dev. 2007;74(3):332–340.

    Article  CAS  PubMed  Google Scholar 

  104. Bohring C, Krause E, Habermann B, Krause W. Isolation and identification of sperm membrane antigens recognized by antisperm antibodies, and their possible role in immunological infertility disease. Mol Hum Reprod. 2001;7(2):113–118.

    Article  CAS  PubMed  Google Scholar 

  105. Rajeev SK, Reddy KV. Sperm membrane protein profiles of fertile and infertile men: identification and characterization of fertility-associated sperm antigen. Hum Reprod. 2004;19(2): 234–242.

    Article  CAS  PubMed  Google Scholar 

  106. Allen MJ, Lee C, Lee JD IV, et al. Atomic force microscopy of mammalian sperm chromatin. Chromosoma. 1993;102(9):623–630.

    Article  CAS  PubMed  Google Scholar 

  107. Oliva R, Castillo J. Proteomics and the genetics of sperm chromatin condensation. Asian J Androl. 2011;13(1):24–30.

    Article  PubMed  Google Scholar 

  108. van der Heijden GW, Ramos L, Baart EB, et al. Spermatozoa-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol. 2008;8:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Puri D, Dhawan J, Mishra RK. The paternal hidden agenda Epigenetic inheritance through spermatozoa chromatin. Epigenetics. 2010;5(5):386–391.

    Article  CAS  PubMed  Google Scholar 

  110. Ward WS. Function of spermatozoa chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–36.

    Article  CAS  PubMed  Google Scholar 

  111. Jenkins TG, Carrell DT. The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl. 2011;13(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  112. Schagdarsurengin U, Paradowska A, Steger K. Analysing the spermatozoa epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol. 2012;9(11):609–619.

    Article  CAS  PubMed  Google Scholar 

  113. Kumar K, Deka D, Singh A, Mitra DK, Vanitha BR, Dada R. Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet. 2012;29(9):861–867.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yamauchi Y, Shaman JA, Ward WS. Non genetic contributions of the spermatozoa nucleus to embryonic development. Asian J Androl. 2011;13(1):31–35.

    Article  CAS  PubMed  Google Scholar 

  115. Gur Y, Breitbart H. Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol Cell Endocrinol. 2008; 282(1–2):45–55.

    Article  CAS  PubMed  Google Scholar 

  116. Zhao C, Guo XJ, Shi ZH, et al. Role of translation by mitochondrial-type ribosomes during spermcapacitation: an analysis based on a proteomic approach. Proteomics. 2009; 9(5):1385–1399.

    Article  CAS  PubMed  Google Scholar 

  117. Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics. 2013;12(2): 330–342.

    Article  CAS  PubMed  Google Scholar 

  118. Chan CC, Shui HA, Wu CH, et al. Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J Proteome Res. 2009;8(11):5382–5386.

    Article  CAS  PubMed  Google Scholar 

  119. Parte PP, Rao P, Redij S, et al. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MSE) reveals altered proteomic signatures in asthenozoospermia. J Proteomics. 2012;75(18): 5861–5871.

    Article  CAS  PubMed  Google Scholar 

  120. Shivaji S, Kota V, Siva AB. The role of mitochondrial proteins in sperm capacitation. J Reprod Immunol. 2009;83(1–2):14–18.

    Article  CAS  PubMed  Google Scholar 

  121. Bedford JM, Calvin HI. Changes in –S–S– linked structures of the sperm tailduring epididymal maturation, with comparative observations in sub-mammalian species. J Exp Zool. 1974; 187(2):181–204.

    Article  CAS  PubMed  Google Scholar 

  122. Baltz JM, Williams PO, Cone RA. Dense fibers protect mammalian sperm against damage. Biol Reprod. 1990;43(3):485–491.

    Article  CAS  PubMed  Google Scholar 

  123. Petersen C, Füzesi L, Hoyer-Fender S. Outer dense fibre proteins from human sperm tail: molecular cloning and expression analyses of two cDNA transcripts encoding proteins of approximately 70 kDa. Mol Hum Reprod. 1999;5(7):627–635.

    Article  CAS  PubMed  Google Scholar 

  124. Robert M, Gagnon C. Purification and characterization of the active precursor of a human sperm motility inhibitor secreted by the seminal vesicles: identity with semenogelin. Biol Reprod. 1996;55(4):813–821.

    Article  CAS  PubMed  Google Scholar 

  125. Sutovsky P, Turner RM, Hameed S, Sutovsky M. Differential ubiquitination of stallion sperm proteins: possible implications for infertility and reproductive seasonality. Biol Reprod. 2003; 68(2):688–698.

    Article  CAS  PubMed  Google Scholar 

  126. Sutovsky P, Hauser R, Sutovsky M. Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Hum Reprod. 2004;19(3):628–638.

    Article  CAS  PubMed  Google Scholar 

  127. Ficarro S, Chertihin O, Westbrook VA, et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of akinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003; 278:11579–11589.

    Article  CAS  PubMed  Google Scholar 

  128. Naz RK, Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod Biol Endocrinol. 2004; 2:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3’,5’monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod.1996;55(3):684–692.

    Article  CAS  PubMed  Google Scholar 

  130. Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H. Remodelling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biology Reprod. 2003;68(3):837–845.

    Article  CAS  Google Scholar 

  131. Tan H, Xu Y, Xu J, et al. Association of increased heat shock protein 70 levels in the lymphocyte with high risk of adverse pregnancy outcomes in early pregnancy: a nested case-control study. Cell Stress Chaperones. 2007;12(3):230–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vuento M, Kuusela P, Virkki M, Koskimies A. Characterization of fibronectin on human spermatozoa. Hoppe Seylers Z Physiol Chem. 1984;365(7):757–762.

    Article  CAS  PubMed  Google Scholar 

  133. Fusi FM, Bronson RA. Sperm surface fibronectin, expression following capacitation. J Androl. 1992;13(1):28–35.

    CAS  PubMed  Google Scholar 

  134. Fusi FM, Lorenzetti I, Vignali M, Bronson RA. Sperm surface proteins following capacitation: expression of vitronectin on the equatorial segment and laminin on sperm tail. J Androl. 1992; 13(6):488–497.

    CAS  PubMed  Google Scholar 

  135. Fusi FM, Bernocchi N, Ferrari A, Bronson RA. Is vitronectin the velcro that binds the gametes together? Mol Hum Reprod. 1996; 2(11):859–866.

    Article  CAS  PubMed  Google Scholar 

  136. Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3(4):243–252.

    Article  CAS  PubMed  Google Scholar 

  137. Agarwal A, Durairajanayagam D, Halabi J, Peng J, Levin MV. Proteomics, oxidative stress and male infertility. Reprod Biomed Online. 2014;29(1):32–58.

    Article  CAS  PubMed  Google Scholar 

  138. Sa’nchez V, Wistuba J, Mallidis C. Semen analysis: update on clinical value, current needs and future perspectives. Reproduction. 2013;146(6):249–258.

    Article  CAS  Google Scholar 

  139. Macleod G, Varmuza S. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function. FEBS J. 2013;280(22):5635–5651.

    Article  CAS  PubMed  Google Scholar 

  140. Alves G, Wu WW, Wang G, Shen RF, Yu YK. Enhancing peptide identification confidence by combining search methods. J Proteome Res. 2008;7(8):3102–3113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boja ES, Rodriguez H. The path to clinical proteomics research: integration of proteomics, genomics, clinical laboratory and regulatory science. Korean J Lab Med. 2011;31(2):61–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cooper TG, Yeung CH. Recent biochemical approaches to posttesticular, epididymal contraception. Hum Reprod Update. 1999; 5(2):141–152.

    Article  CAS  PubMed  Google Scholar 

  143. Khole V. Epididymis as a target for contraception. Indian J Exp Biol. 2003;41(7):764–772.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luna Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, G., Swain, N. & Samanta, L. Sperm Proteome: What Is on the Horizon?. Reprod. Sci. 22, 638–653 (2015). https://doi.org/10.1177/1933719114558918

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114558918

Keywords

Navigation