Skip to main content
Log in

Establishment of a New Ovarian Cancer Cell Line CA5171

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

A new cell line, CA5171, derived from a chemotherapy-naive, high-grade undifferentiated ovarian carcinoma was established and characterized. The CA5171 cells presented with cobblestone morphology and a doubling time of 24 hours. Gene mutation analysis showed that the cells belonged to the type II ovarian cancer pathway with mutations of PIK3CA, PTEN, and TP53. Single-nucleotide polymorphism array analysis showed no homozygous gene deletion; however, several loci of gene copy number gains were noted in chromosome 1, 2, 5, 9, 10, 12, 15, 16, 20, and X. The in vitro and in vivo experiments showed that the cells were sensitive to paclitaxel and doxorubicin, but resistant to cisplatin. The cells also presented epithelial-mesenchymal transition properties that may have been related to their invasion and migration potential. The CA5171 cells show the potential as a new cell line for studies on epithelial ovarian carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–249.

    Article  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  Google Scholar 

  3. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3(7):502–516.

    Article  CAS  Google Scholar 

  4. Kurman RJ, Shih Ie M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34(3):433–443.

    Article  Google Scholar 

  5. Kuo KT, Mao TL, Jones S, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174(5):1597–1601.

    Article  CAS  Google Scholar 

  6. Lu TP, Lai LC, Tsai MH, et al. Integrated analyses of copy number variations and gene expression in lung adenocarcinoma. PLoS One. 2011;6(9):e24829.

    Article  CAS  Google Scholar 

  7. Aoki D, Suzuki N, Susumu N, et al. Establishment and characterization of the RMG-V cell line from human ovarian clear cell adenocarcinoma. Hum Cell. 2005;18(3):143–146.

    Article  Google Scholar 

  8. Nishikawa Y, Yoshida Y, Kawahara K, Kurokawa T, Tajima K, Kotsuji F. Establishment of a novel human ovarian cancer cell line with high anchorage-independent growth ability. Int J Oncol. 2003;23(6):1679–1686.

    PubMed  CAS  Google Scholar 

  9. Scoles DR, Pavelka J, Cass I, et al. Characterization of CSOC 882, a novel immortalized ovarian cancer cell line expressing EGFR, HER2, and activated AKT. Gynecol Oncol. 2007;104(1):120–128.

    Article  CAS  Google Scholar 

  10. Alama A, Barbieri F, Favre A, et al. Establishment and characterization of three new cell lines derived from the ascites of human ovarian carcinomas. Gynecol Oncol. 1996;62(1):82–88.

    Article  CAS  Google Scholar 

  11. Hirte HW, Kaiser JS, Bacchetti S. Establishment and characterization of four human epithelial ovarian carcinoma cell lines. Cancer. 1994;74(3):900–906.

    Article  CAS  Google Scholar 

  12. Provencher DM, Finstad CL, Saigo PE, et al. Comparison of antigen expression on fresh and cultured ascites cells and on solid tumors of patients with epithelial ovarian cancer. Gynecol Oncol. 1993;50(1):78–83.

    Article  CAS  Google Scholar 

  13. Mobus V, Gerharz CD, Press U, et al. Morphological, immunohistochemical and biochemical characterization of 6 newly established human ovarian carcinoma cell lines. Int J Cancer. 1992;52(1):76–84.

    Article  CAS  Google Scholar 

  14. Wong WS, Wong YF, Ng YT, et al. Establishment and characterization of a new human cell line derived from ovarian clear cell carcinoma. Gynecol Oncol. 1990;38(1):37–45.

    Article  CAS  Google Scholar 

  15. Langdon SP, Lawrie SS, Hay FG, et al Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res. 1988;48(21):6166–6172.

    PubMed  CAS  Google Scholar 

  16. Hamilton TC, Young RC, McKoy WM, et al. Characterization of a human ovarian carcinoma cell line (NIH: OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983;43(11):5379–5389.

    PubMed  CAS  Google Scholar 

  17. Kurman RJ, Shih Ie M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum Pathol. 2011;42(7):918–931.

    Article  CAS  Google Scholar 

  18. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res. 2013;19(5):961–968.

    Article  CAS  Google Scholar 

  19. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–615.

    Article  CAS  Google Scholar 

  20. Almeida A, Zhu XX, Vogt N, et al. GAC1, a new member of the leucine-rich repeat superfamily on chromosome band 1q32.1, is amplified and overexpressed in malignant gliomas. Oncogene. 1998;16(23):2997–3002.

    Article  CAS  Google Scholar 

  21. Giroux V, Iovanna JL, Garcia S, Dagorn JC. Combined inhibition of PAK7, MAP3K7 and CK2alpha kinases inhibits the growth of MiaPaCa2 pancreatic cancer cell xenografts. Cancer Gene Ther. 2009;16(9):731–740.

    Article  CAS  Google Scholar 

  22. Gong W, An Z, Wang Y, et al. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer. 2009;125(3):548–555.

    Article  CAS  Google Scholar 

  23. Gu J, Li K, Li M, et al. A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J. 2013;280(1):46–55.

    Article  CAS  Google Scholar 

  24. Wild JR, Staton CA, Chapple K, Corfe BM. Neuropilins: expression and roles in the epithelium. Int J Ex Pathol. 2012;93(2): 81–103.

    Article  CAS  Google Scholar 

  25. Lin DC, Xu L, Ding LW, et al. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers. Proc Natl Acad Sci USA. 2013;110(15):6109–6114.

    Article  CAS  Google Scholar 

  26. Berois N, Gattolliat CH, Barrios E, et al. GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem. 2013;59(1):225–233.

    Article  CAS  Google Scholar 

  27. Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 2009; 1(6):a003129.

    Article  Google Scholar 

  28. Bordow SB, Norris MD, Haber PS, Marshall GM, Haber M. Prognostic significance of MYCN oncogene expression in childhood neuroblastoma. J Clin Oncol. 1998;16(10):3286–3294.

    Article  CAS  Google Scholar 

  29. Jacobs JF, van Bokhoven H, van Leeuwen FN, et al. Regulation of MYCN expression in human neuroblastoma cells. BMC Cancer. 2009;9:239.

    Article  CAS  Google Scholar 

  30. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890.

    Article  CAS  Google Scholar 

  31. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–428.

    Article  CAS  Google Scholar 

  32. Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives [published online August 29, 2014]. Tumour Biol. 2014.

  33. Yang J, Weinberg RA. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008; 14(6):818–829.

    Article  CAS  Google Scholar 

  34. Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem. 2008;318(1–2):89–99.

    Article  CAS  Google Scholar 

  35. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28(1–2):151–166.

    Article  CAS  Google Scholar 

  36. Davidowitz RA, Selfors LM, Iwanicki MP, et al. Mesenchymal gene program-expressing ovarian cancer spheroids exhibit enhanced mesothelial clearance. J Clin Invest. 2014;124(6):2611–2625.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-An Chen MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, YC., Cheng, WF., Chang, MC. et al. Establishment of a New Ovarian Cancer Cell Line CA5171. Reprod. Sci. 22, 725–734 (2015). https://doi.org/10.1177/1933719114557893

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114557893

Keywords

Navigation