Skip to main content

Advertisement

Log in

Expression of Nodal, Cripto, SMAD3, Phosphorylated SMAD3, and SMAD4 in the Proliferative Endometrium of Women With Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Nodal is a growth factor of the transforming growth factor β superfamily that is expressed in high turnover tissues, such as the human endometrium, and in several malignancies. The effects of Nodal are modulated by the coreceptor Cripto and mediated by SMAD proteins. This study evaluated the gene and protein expression of Nodal, Cripto, total and phosphorylated (p) SMAD3, and SMAD4 in the proliferative endometrium of women with and without endometriosis.

Method

Total RNA was isolated and complementary DNA synthesized from eutopic endometrium of women with (n = 15) and without (n = 12) endometriosis, followed by quantitative real-time polymerase chain reaction (PCR) to evaluate the gene expression of Nodal, Cripto, SMAD3, and SMAD4. Western blot was used to evaluate the protein levels of Nodal and Cripto, and immunohistochemistry was performed to localize SMAD3, pSMAD3, and SMAD4.

Results

Although Nodal expression was unchanged in women with endometriosis, real-time PCR indicated lower gene expression of Cripto (fold change 0.27, P < .05) in the endometriosis group. This difference, however, was not maintained at protein expression level as assessed by Western blot. The immunostaining of total SMAD3 was reduced in the endometriosis group (P < .01), but the localization of pSMAD3 and the nuclear staining of SMAD4 were unchanged.

Conclusion

These findings suggest that the Nodal signaling pathway has subtle changes in the endometrium of women with endometriosis, but this imbalance may not cause functional damage as it seems not to affect the nuclear expression of SMAD4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones RL, Stoikos C, Findlay JK, Salamonsen LA. TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction. 2006;132(2):217–232.

    Article  CAS  PubMed  Google Scholar 

  2. Papageorgiou I, Nicholls PK, Wang F, et al. Expression of nodal signalling components in cycling human endometrium and in endometrial cancer. Reprod Biol Endocrinol. 2009;7:122.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Torres PB, Florio P, Galleri L, Reis FM, Borges LE, Petraglia F. Activin A, activin receptor type II, nodal, and cripto mRNA are expressed by eutopic and ectopic endometrium in women with ovarian endometriosis. Reprod Sci. 2009;16(8):727–733.

    Article  CAS  PubMed  Google Scholar 

  4. Godkin JD, Dore JJ. Transforming growth factor beta and the endometrium. Rev Reprod. 1998;3(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar A, Novoselov V, Celeste AJ, Wolfman NM, ten Dijke P, Kuehn MR. Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. J Biol Chem. 2001;276(1): 656–661.

    Article  CAS  PubMed  Google Scholar 

  6. Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol. 2013;45(4):885–898.

    Article  CAS  PubMed  Google Scholar 

  7. Shen MM. Nodal signaling: developmental roles and regulation. Development. 2007;134(6):1023–1034.

    Article  CAS  PubMed  Google Scholar 

  8. Brandenberger R, Wei H, Zhang S, et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol. 2004;22(6): 707–716.

    Article  PubMed  Google Scholar 

  9. Vallier L, Touboul T, Chng Z, et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One. 2009; 4(6):e6082.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ. Nodal signalling in the epiblast patterns the early mouse embryo. Nature. 2001;411(6840):965–969.

    Article  CAS  PubMed  Google Scholar 

  11. Kenney NJ, Adkins HB, Sanicola M. Nodal and Cripto-1: embryonic pattern formation genes involved in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia. 2004;9(2): 133–144.

    Article  PubMed  Google Scholar 

  12. Harrison CA, Gray PC, Vale WW, Robertson DM. Antagonists of activin signaling: mechanisms and potential biological applications. Trends Endocrinol Metab. 2005;16(2):73–78.

    Article  CAS  PubMed  Google Scholar 

  13. Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J. 2008; 55(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  14. Schier AF. Nodal morphogens. Cold Spring Harb Perspect Biol. 2009;1(5):a003459.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature. 2000;403(6766):385–389.

    Article  CAS  PubMed  Google Scholar 

  16. Yeo C, Whitman M. Nodal signals to Smads through Criptodependent and Cripto-independent mechanisms. Mol Cell. 2001; 7(5):949–957.

    Article  CAS  PubMed  Google Scholar 

  17. Yan YT, Liu JJ, Luo Y, et al. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol. 2002; 22(13):4439–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am. 1997;24(2):235–258.

    Article  CAS  PubMed  Google Scholar 

  19. Centini G, Lazzeri L, Dores D, et al. Chronic pelvic pain and quality of life in women with and without endometriosis. J Endometr. 2013;5:(1)27–33.

    Article  Google Scholar 

  20. Rogers PA, D’Hooghe TM, Fazleabas A, et al. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009;16(4):335–346.

    Article  PubMed  Google Scholar 

  21. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–519.

    Article  CAS  PubMed  Google Scholar 

  22. Vercellini P, Vigano P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2014;10(5): 261–275.

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira FR, Dela Cruz C, Del Puerto HL, Vilamil QT, Reis FM, Camargos AF. Stem cells: are they the answer to the puzzling etiology of endometriosis? Histol Histopathol. 2012;27(1):23–29.

    CAS  PubMed  Google Scholar 

  24. Wakefield LM, Hill CS. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer. 2013;13(5): 328–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. Targeting Nodal in malignant melanoma cells. Expert Opin Ther Targets. 2007;11(4):497–505.

    Article  CAS  PubMed  Google Scholar 

  26. Quail DF, Walsh LA, Zhang G, et al. Embryonic protein nodal promotes breast cancer vascularization. Cancer Res. 2012; 72(15):3851–3863.

    Article  CAS  PubMed  Google Scholar 

  27. Rocha AL, Carrarelli P, Novembri R, et al. Altered expression of activin, cripto, and follistatin in the endometrium of women with endometrioma. Fertil Steril. 2011;95(7):2241–2246.

    Article  CAS  PubMed  Google Scholar 

  28. Fuhrich DG, Lessey BA, Savaris RF. Comparison of HSCORE assessment of endometrial beta3 integrin subunit expression with digital HSCORE using computerized image analysis (ImageJ). Anal Quant Cytol Histol. 2013;35(4):210–216.

    Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  30. Munksgaard PS, Blaakaer J. The association between endometriosis and ovarian cancer: a review of histological, genetic and molecular alterations. Gynecol Oncol. 2012;124(1): 164–169.

    Article  CAS  PubMed  Google Scholar 

  31. Vlahos NF, Economopoulos KP, Fotiou S. Endometriosis, in vitro fertilisation and the risk of gynaecological malignancies, including ovarian and breast cancer. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):39–50.

    Article  PubMed  Google Scholar 

  32. Lee CC, Jan HJ, Lai JH, et al. Nodal promotes growth and invasion in human gliomas. Oncogene. 2010;29(21):3110–3123.

    Article  CAS  PubMed  Google Scholar 

  33. Quail DF, Zhang G, Walsh LA, et al. Embryonic morphogen nodal promotes breast cancer growth and progression. PLoS One. 2012;7(11):e48237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strizzi L, Hardy KM, Kirschmann DA, Ahrlund-Richter L, Hendrix MJ. Nodal expression and detection in cancer: experience and challenges. Cancer Res. 2012;72(8):1915–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones RL, Salamonsen LA, Zhao YC, Ethier JF, Drummond AE, Findlay JK. Expression of activin receptors, follistatin and betaglycan by human endometrial stromal cells; consistent with a role for activins during decidualization. Mol Hum Reprod 2002;8(4): 363–374.

    Article  CAS  PubMed  Google Scholar 

  36. Zimmerman CM, Padgett RW. Transforming growth factor beta signaling mediators and modulators. Gene. 2000;249(1–2):17–30.

    Article  CAS  PubMed  Google Scholar 

  37. Luo X, Xu J, Chegini N. The expression of Smads in human endometrium and regulation and induction in endometrial epithelial and stromal cells by transforming growth factor-beta. J Clin Endocrinol Metab. 2003;88(10):4967–4976.

    Article  CAS  PubMed  Google Scholar 

  38. Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK. Downregulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–3790.

    CAS  PubMed  Google Scholar 

  39. Mabuchi Y, Yamoto M, Minami S, Umesaki N. Immunohistochemical localization of inhibin and activin subunits, activin receptors and Smads in ovarian endometriosis. Int J Mol Med. 2010;25(1):17–23.

    PubMed  Google Scholar 

  40. Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun. 2003;306(4): 799–804.

    Article  CAS  PubMed  Google Scholar 

  41. Heikkinen PT, Nummela M, Leivonen SK, et al. Hypoxiaactivated Smad3-specific dephosphorylation by PP2A. J Biol Chem. 2010;285(6):3740–3749.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. Reis MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, C.D., Del Puerto, H.L., Rocha, A.L.L. et al. Expression of Nodal, Cripto, SMAD3, Phosphorylated SMAD3, and SMAD4 in the Proliferative Endometrium of Women With Endometriosis. Reprod. Sci. 22, 527–533 (2015). https://doi.org/10.1177/1933719114549855

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114549855

Keywords

Navigation