Skip to main content

Advertisement

Log in

Phenytoin Is an Estrogen Receptor α-Selective Modulator That Interacts With Helix 12

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Rationale: Phenytoin (Dilantin® DPH) is used to treat epilepsy but causes estrogen agonist–antagonist-like side effects. We investigated the interaction of phenytoin with estrogen receptors (ERs) α and β by computational molecular docking, ER competition binding, transcriptional assays, and biological actions, comparing outcomes with estradiol (E2), estrone (E1), and tamoxifen (TMX). Experimental: (1) The DPH docking to 3-dimensional crystal structures of the ERα ligand-binding domain (LBD) showed a high degree of structural complementarity (−57.15 calculated energy units, approximating kcal/mol) with the ligand-binding pocket, including a contact at leucine (L540) in helix 12. Estrogen receptor β showed slightly less favorable interactions (−54.27 kcal/mol), without contacting L450. Estradiol, E1, and TMX contact points with ERα and ERβ do not include L450. (2) Cellular actions: Incubation of cells transfected with ERα or ERβ and a luciferase promoter phenytoin was several orders weaker than E2 as an agonist through ERα and had no effect through ERβ. However, phenytoin at clinical concentrations (10−11 to 10−6 mol/L) powerfully antagonized action of E2 on ERα-expressing cells. Similarly, phenytoin at clinically effective concentrations marginally induced alkaline phosphatase by ERα- and ERβ-expressing endometrial cancer cells but at doses well below clinical effectiveness blocked E2-induced alkaline phosphatase. (3) ER competition: In Scatchard plots comparing phenytoin with 17β-estradiol against endometrial cancer cell cytosol E2-alone more effectively displaced labeled E2 than phenytoin, but phenytoin was approximately equimolar effective to E2 in inhibiting E2’s displacement of the radiolabel, further confirming that phenytoin is a strong E2 antagonist. Conclusions: At clinically effective concentrations, phenytoin is a strong ERα cell antagonist but a many-fold weaker agonist. Although it interacts with ERβ LBD residues, phenytoin has no effects on ERβ-only expressing cells. Docking studies indicate phenytoin interacts with the ERα LBD at the hinge of helix 12 and could thereby interfere with the entry of other ER ligands or with the mobility of helix 12, either of which actions could explain phenytoin’s antagonism of ER-mediated E2 actions. Our results suggest an explanation for the broad profile of phenytoin’s actions and raise possibilities for the use of phenytoin or congeners in the clinical management of ERα-dependent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. West PJ, Saunders GW, Remigio GJ, Wilcox KS, White HS. Antiseizure drugs differentially modulate theta-burst induced long-term potentiation in C57BL/6 mice. Epilepsia. 2014;55(2):214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bilezikian JP, Matsumoto T, Bellido T, et al. Targeting bone remodeling for the treatment of osteoporosis: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2009;24(3):373–385.

    Article  PubMed  Google Scholar 

  3. Dreyfus J. The Story of a Remarkable Medicine. New York:Lantern Books;2003.

    Google Scholar 

  4. Mattson RH, Cramer JA, Darney PD, Naftolin F. Use of oral contraceptives by women with epilepsy. JAMA. 1986;256(2):238–240.

    Article  CAS  PubMed  Google Scholar 

  5. Arabaci T, Kose O, Kizildag A, Albayrak M, Cicek Y, Kara A. Role of nuclear factor kappa-B in phenytoin-induced gingival overgrowth. Oral Dis. 2014;20(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  6. Lugo L, Villalvilla A, Largo R, Herrero-Beaumont G, Roman-Bias JA. Selective estrogen receptor modulators (SERMs): new alternatives for osteoarthritis? Maturitas. 2014;77(4):380–384.

    Article  CAS  PubMed  Google Scholar 

  7. Chlebowski RT. Current concepts: breast cancer chemoprevention. Pol Arch Med Wewn. 2014;124(4):191–199.

    PubMed  Google Scholar 

  8. McDonnell DP, Wardell SE. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol. 2010;10(6):620–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katzenellenbogen BS, Sun J, Harrington WR, Kraichely DM, Ganessunker D, Katzenellenbogen JA. Structure-function relationships in estrogen receptors and the characterization of novel selective estrogen receptor modulators with unique pharmacological profiles. Ann N Y Acad Sci 2001;949:6–15.

    Article  CAS  PubMed  Google Scholar 

  10. Nettles KW, Bruning JB, Gil G, et al. Structural plasticity in the oestrogen receptor ligand-binding domain. EMBO Rep. 2007;8(6):563–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Malley BW, Malovannaya A, Qin J. Minireview: nuclear receptor and coregulator proteomics—2012 and beyond. Mol Endocrinol (Baltimore, MD). 2012;26(10):1646–1650.

    Article  CAS  Google Scholar 

  12. Shiau AK, Barstad D, Radek JT, et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol. 2002;9(5):359–364.

    CAS  PubMed  Google Scholar 

  13. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–141.

    CAS  PubMed  Google Scholar 

  14. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev. 2009;30(4):343–375.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson ER, Wardell SE, Jasper JS, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342(6162):1094–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bedell S, Nachtigall M, Naftolin F. The pros and cons of plant estrogens for menopause. J Steroid Biochem Mol Biol. 2014;139:225–236.

    Article  CAS  PubMed  Google Scholar 

  17. Vandenberg LN, Colborn T, Hayes TB, et al. Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod Toxicol. 2013;38:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oliva P, Roncoroni C, Radaelli E, et al. Global profiling of TSEC proliferative potential by the use of a reporter mouse for proliferation. Reprod Sci. 2013;20(2):119–128.

    Article  PubMed  CAS  Google Scholar 

  19. Kulak J Jr, Ferriani RA, Komm BS, Taylor HS. Tissue selective estrogen complexes (TSECs) differentially modulate markers of proliferation and differentiation in endometrial cells. Reprod Sci. 2013;20(2):129–137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Berga SL. Profile of ospemifene in the breast. Reprod Sci. 2013;20(10):1130–1136.

    Article  PubMed  CAS  Google Scholar 

  21. Buscaglia CA, Hoi WG, Nussenzweig V, Cardozo T. Modeling the interaction between aldolase and the thrombospondin-related anonymous protein, a key connection of the malaria parasite invasion machinery. Proteins. 2007;66(3):528–537.

    Article  CAS  PubMed  Google Scholar 

  22. Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389(6652):753–758.

    Article  CAS  PubMed  Google Scholar 

  23. Abagyan R, Totrov M, Kuznetsov D. ICM—a new method for protein modeling and design—applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15(5):488–506.

    Article  CAS  Google Scholar 

  24. Fernandez-Recio J, Totrov M, Abagyan R. Soft protein-protein docking in internal coordinates. Protein Sci. 2002;11(2):280–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abagyan R, Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994;235(3):983–1002.

    Article  CAS  PubMed  Google Scholar 

  26. Mocklinghoff S, Rose R, Carraz M, Visser A, Ottmann C, Brunsveld L. Synthesis and crystal structure of a phosphorylated estrogen receptor ligand binding domain. Chem Biochem. 2010;11(16):2251–2254.

    Google Scholar 

  27. Fernandez-Recio J, Totrov M, Abagyan R. Screened charge electrostatic model in protein-protein docking simulations. Pac Sym Biocomput. 2002:552–563.

  28. Abagyan R, Totrov M. High-throughput docking for lead generation. Curr Opin Chem Biol. 2001;5(4):375–382.

    Article  CAS  PubMed  Google Scholar 

  29. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology. 1990;127(6):2757–2762.

    Article  CAS  PubMed  Google Scholar 

  30. Katritch V, Byrd CM, Tseitin V, et al. Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches. J Comput Aided Mol Des. 2007;21(10–11):549–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Danielian PS, White R, Lees JA, Parker MG. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 1992;11(3):1025–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Siniscalchi A, Gallelli L, Russo E, De Sarro G. A review on anti-epileptic drugs-dependent fatigue: pathophysiological mechanisms and incidence. Eur J Pharmacol. 2013;718(1–3):10–16.

    Article  CAS  PubMed  Google Scholar 

  33. Shetty AK. Prospects of levetiracetam as a neuroprotective drug against status epilepticus, traumatic brain injury, and stroke. Front Neurol. 2013;4:172.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kirmani BF, Mungall D, Ling G. Role of intravenous levetiracetam in seizure prophylaxis of severe traumatic brain injury patients. Front Neurol. 2013;4:170.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hines LE, Murphy JE. Potentially harmful drug-drug interactions in the elderly: a review. Am J Geriatr Pharmacother. 2011;9(6):364–377.

    Article  CAS  PubMed  Google Scholar 

  36. Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA. 2003;289(13):1652–1658.

    Article  CAS  PubMed  Google Scholar 

  37. Svalheim S, Roste LS, Nakken KO, Tauboll E. Bone health in adults with epilepsy. Acta Neurol Scand Suppl. 2011(191):89–95.

    Article  Google Scholar 

  38. Cornacchio AL, Burneo JG, Aragon CE. The effects of antiepileptic drugs on oral health. J Can Dent Assoc. 2011;77:b140.

    PubMed  Google Scholar 

  39. Nakken KO, Tauboll E. Bone loss associated with use of antiepileptic drugs. Expert Opin Drug Saf. 2010;9(4):561–571.

    Article  CAS  PubMed  Google Scholar 

  40. Black JA, Liu S, Waxman SG. Sodium channel activity modulates multiple functions in microglia. Glia. 2009;57(10):1072–1081.

    Article  PubMed  Google Scholar 

  41. Black JA, Waxman SG. Phenytoin protects central axons in experimental autoimmune encephalomyelitis. J Neurol Sci. 2008;274(1–2):57–63.

    Article  CAS  PubMed  Google Scholar 

  42. Harvey SC. Treatment of electrostatic effects in macromolecular modeling. Proteins. 1989;5(1):78–92.

    Article  CAS  PubMed  Google Scholar 

  43. Yang M, Kozminski DJ, Wold LA, et al. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Research Treat. 2012;134(2):603–615.

    Article  CAS  Google Scholar 

  44. McAuley JW, Anderson GD. Treatment of epilepsy in women of reproductive age: pharmacokinetic considerations. Clin Pharmacokinet. 2002;41(8):559–579.

    Article  CAS  PubMed  Google Scholar 

  45. Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem. 2000;43(20):3786–3791.

    Article  CAS  PubMed  Google Scholar 

  46. Hamilton KJ, Arao Y, Korach KS. Estrogen hormone physiology: reproductive findings from estrogen receptor mutant mice. Reprod Biol. 2014;14(1):3–8.

    Article  PubMed  Google Scholar 

  47. Reyes CM, Kollman PA. Investigating the binding specificity of U1A-RNA by computational mutagenesis. J Mol Biol. 2000;295(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  48. Eslami H, Mojahedi F, Moghadasi J. Molecular dynamics simulation with weak coupling to heat and material baths. J Chem Phys. 2010;133(8):084105.

    Article  PubMed  CAS  Google Scholar 

  49. Pereira CA, Alchorne Ade O. Assessment of the effect of phenytoin on cutaneous healing from excision of melanocytic nevi on the face and on the back. BMC Dermatol. 2010;10:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pack AM, Morrell MJ, Randall A, McMahon DJ, Shane E. Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy. Neurology. 2008;70(18):1586–1593.

    Article  CAS  PubMed  Google Scholar 

  51. Khaira A, Gupta A, Madhu SV, Khaira DD. Phenytoin induced severe disabling osteomalacia in a young male with seizure disorder. J Assoc Physicians India. 2008;56:376–378.

    PubMed  Google Scholar 

  52. Vahabi S, Salman BN, Rezazadeh F, Namdari M. Effects of cyclosporine and phenytoin on biomarker expressions in gingival fibroblasts of children and adults: an in vitro study. J Basic Clin Physiol Pharmacol. 2014;25(2):167–173.

    Article  CAS  PubMed  Google Scholar 

  53. Francis J, Burnham WM. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels. Mol Pharmacol. 1992;42(6):1097–1103.

    CAS  PubMed  Google Scholar 

  54. Simoncini T, Scorticati C, Mannella P, et al. Estrogen receptor alpha interacts with Galpha13 to drive actin remodeling and endothelial cell migration via the RhoA/Rho kinase/moesin pathway. Mol Endocrinol. 2006;20(8):1756–1771.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Naftolin MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadiel, A., Song, J., Tivon, D. et al. Phenytoin Is an Estrogen Receptor α-Selective Modulator That Interacts With Helix 12. Reprod. Sci. 22, 146–155 (2015). https://doi.org/10.1177/1933719114549853

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114549853

Keywords

Navigation