Skip to main content

Advertisement

Log in

Excess Maternal Glucocorticoids in Response to In Utero Undernutrition Inhibit Offspring Angiogenesis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

To test the hypothesis that inhibition of offspring angiogenesis by maternal undernutrition (MUN) is mediated by maternal glucocorticoids, 3 groups of dams were studied: controls received ad libitum food; MUN dams were food restricted by 50% from day 10 of gestation; and metyrapone (MET) dams were food restricted and treated with 0.5 mg/mL of MET, a glucocorticoid synthesis inhibitor. The MUN reduced birth weights, reduced vascular endothelial growth factor (VEGF) abundance in P1 aortas, reduced VEGF and VEGF-R2 abundances in P1 mesenteric arterioles, reduced arteriolar endothelial nitric oxide synthase abundance, reduced microvessel density in the anterior tibialis, reduced endothelial cell branching in culture, reduced arteriolar immunoreactivity for proliferating cell nuclear antigen (PCNA), increased active caspase 3 in P1 mesenteric arterioles, and decreased matrix metalloproteinase (MMP)-2 and MMP-9 abundances in lysates of P1 aortas. All of these effects were prevented by treatment with metyrapone. Collectively, these findings suggest that reduced angiogenesis in MUN offspring involves direct inhibitory effects of maternal glucorticoid on fetal VEGF and its receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673): 564–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tare M, Parkington HC, Bubb KJ, Wlodek ME. Uteroplacental insufficiency and lactational environment separately influence arterial stiffness and vascular function in adult male rats. Hypertension. 2012;60(2):378–386.

    Article  CAS  PubMed  Google Scholar 

  3. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85(2):571–633.

    Article  CAS  PubMed  Google Scholar 

  4. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav. 2011;59(3):279–289.

    Article  CAS  PubMed  Google Scholar 

  5. Langley-Evans SC, McMullen S. Developmental origins of adult disease. Med Princ Pract. 2010;19(2):87–98.

    Article  PubMed  Google Scholar 

  6. Moritz K, Butkus A, Hantzis V, Peers A, Wintour EM, Dodic M. Prolonged low-dose dexamethasone, in early gestation, has no long-term deleterious effect on normal ovine fetuses. Endocrinology. 2002;143(4):1159–1165.

    Article  CAS  PubMed  Google Scholar 

  7. Seckl JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol. 2004;151(suppl 3):U49–U62.

    Article  CAS  PubMed  Google Scholar 

  8. Gardner DS, Jackson AA, Langley-Evans SC. Maintenance of maternal diet-induced hypertension in the rat is dependent on glucocorticoids. Hypertension. 1997;30(6):1525–1530.

    Article  CAS  PubMed  Google Scholar 

  9. Langley-Evans SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J Hypertens. 1997;15(5):537–544.

    Article  CAS  PubMed  Google Scholar 

  10. Berry LM, Polk DH, Ikegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol. 1997;272(6 pt 2):R1972–R1979.

    CAS  PubMed  Google Scholar 

  11. Langley-Evans SC. Intrauterine programming of hypertension by glucocorticoids. Life Sci. 1997;60(15):1213–1221.

    Article  CAS  PubMed  Google Scholar 

  12. Seckl JR. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol. 2004;4(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  13. Khorram O, Khorram N, Momeni M, et al. Maternal undernutrition inhibits angiogenesis in the offspring: a potential mechanism of programmed hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R745–R753.

    Article  CAS  PubMed  Google Scholar 

  14. Hayman SR, Leung N, Grande JP, Garovic VD. VEGF inhibition, hypertension, and renal toxicity. Curr Oncol Rep. 2012;14(4): 285–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sane DC, Anton L, Brosnihan KB. Angiogenic growth factors and hypertension. Angiogenesis. 2004;7(3):193–201.

    Article  CAS  PubMed  Google Scholar 

  16. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004; 350(7):672–683.

    Article  CAS  PubMed  Google Scholar 

  17. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tran ED, Schmid-Schonbein GW. An in-vivo analysis of capillary stasis and endothelial apoptosis in a model of hypertension. Microcirculation. 2007;14(8):793–804.

    Article  CAS  PubMed  Google Scholar 

  19. Vogt CJ, Schmid-Schonbein GW. Microvascular endothelial cell death and rarefaction in the glucocorticoid-induced hypertensive rat. Microcirculation. 2001;8(2):129–139.

    Article  CAS  PubMed  Google Scholar 

  20. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol. 1998;274(3 pt 2):H1054–H1058.

    CAS  PubMed  Google Scholar 

  21. Horowitz JR, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol. 1997; 17(11):2793–2800.

    Article  CAS  PubMed  Google Scholar 

  22. Lankhorst S, Kappers MH, van Esch JH, Danser AH, van den Meiracker AH. Mechanism of hypertension and proteinuria during angiogenesis inhibition: evolving role of endothelin-1. J Hypertens. 2012;31(3):444–454.

    Article  CAS  Google Scholar 

  23. Smith JT, Waddell BJ. Increased fetal glucocorticoid exposure delays puberty onset in postnatal life. Endocrinology. 2000; 141(7):2422–2428.

    Article  CAS  PubMed  Google Scholar 

  24. Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1): R91–R96.

    Article  CAS  PubMed  Google Scholar 

  25. Khorram O, Momeni M, Desai M, Ross MG. Nutrient restriction in utero induces remodeling of the vascular extracellular matrix in rat offspring. Reprod Sci. 2007;14(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  26. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ. The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods. 2008;172(2):250–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magee JC, Stone AE, Oldham KT, Guice KS. Isolation, culture, and characterization of rat lung microvascular endothelial cells. Am J Physiol. 1994;267(4 pt 1):L433–L441.

    CAS  PubMed  Google Scholar 

  28. Facemire CS, Nixon AB, Griffiths R, Hurwitz H, Coffman TM. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54(3):652–658.

    Article  CAS  PubMed  Google Scholar 

  29. Pladys P, Sennlaub F, Brault S, et al. Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1580–R1588.

    Article  CAS  PubMed  Google Scholar 

  30. Grigore D, Ojeda NB, Alexander BT. Sex differences in the fetal programming of hypertension. Gend Med. 2008;5(suppl A): S121–S132.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ozaki T, Nishina H, Hanson MA, Poston L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol. 2001;530(pt 1):141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001; 49(4):460–467.

    Article  CAS  PubMed  Google Scholar 

  33. Woods LL, Ingelfinger JR, Rasch R. Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol. 2005;289(4): R1131–R1136.

    Article  CAS  PubMed  Google Scholar 

  34. Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 2004;65(4):1339–1348.

    Article  PubMed  Google Scholar 

  35. Khorram NM, Magee TR, Wang C, Desai M, Ross M, Khorram O. Maternal undernutrition programs offspring adrenal expression of steroidogenic enzymes. Reprod Sci. 2011;18(10):931–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology. 2001;142(5):1692–1702.

    Article  CAS  PubMed  Google Scholar 

  37. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology. 2001; 142(7):2841–2853.

    Article  CAS  PubMed  Google Scholar 

  38. Langley-Evans SC, Phillips GJ, Benediktsson R, et al. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 1996;17(2–3): 169–172.

    Article  CAS  PubMed  Google Scholar 

  39. Wyrwoll CS, Seckl JR, Holmes MC. Altered placental function of 11beta-hydroxysteroid dehydrogenase 2 knockout mice. Endocrinology. 2009;150(3):1287–1293.

    Article  CAS  PubMed  Google Scholar 

  40. DeLano FA, Schmid-Schonbein GW. Enhancement of glucocorticoid and mineralocorticoid receptor density in the microcirculation of the spontaneously hypertensive rat. Microcirculation. 2004;11(1):69–78.

    Article  CAS  Google Scholar 

  41. Iwai A, Fujii Y, Kawakami S, et al. Down-regulation of vascular endothelial growth factor in renal cell carcinoma cells by glucocorticoids. Mol Cell Endocrinol. 2004;226(1–2):11–17.

    Article  CAS  PubMed  Google Scholar 

  42. Koedam JA, Smink JJ, van Buul-Offers SC. Glucocorticoids inhibit vascular endothelial growth factor expression in growth plate chondrocytes. Mol Cell Endocrinol. 2002;197(1–2):35–44.

    Article  CAS  PubMed  Google Scholar 

  43. Smink JJ, Buchholz IM, Hamers N, et al. Short-term glucocorti-coid treatment of piglets causes changes in growth plate morphology and angiogenesis. Osteoarthritis Cartilage. 2003;11(12): 864–871.

    Article  CAS  PubMed  Google Scholar 

  44. Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44(3):1192–1201.

    Article  PubMed  Google Scholar 

  45. Machein MR, Kullmer J, Ronicke V, et al. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol Appl Neurobiol. 1999;25(2):104–112.

    Article  CAS  PubMed  Google Scholar 

  46. Wolff JE, Laterra J, Goldstein GW. Steroid inhibition of neural microvessel morphogenesis in vitro: receptor mediation and astroglial dependence. J Neurochem. 1992;58(3):1023–1032.

    Article  CAS  PubMed  Google Scholar 

  47. Nauck M, Karakiulakis G, Perruchoud AP, Papakonstantinou E, Roth M. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol. 1998;341(2-3):309–315.

    Article  CAS  PubMed  Google Scholar 

  48. Gloddek J, Pagotto U, Paez PM, Arzt E, Stalla GK, Renner U. Pituitary adenylate cyclase-activating polypeptide, interleukin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary folliculostellate cells. J Endocrinol. 1999;160(3):483–490.

    Article  CAS  PubMed  Google Scholar 

  49. Finkenzeller G, Technau A, Marme D. Hypoxia-induced transcription of the vascular endothelial growth factor gene is independent of functional AP-1 transcription factor. Biochem Biophys Res Commun. 1995;208(1):432–439.

    Article  CAS  PubMed  Google Scholar 

  50. Gille J, Reisinger K, Westphal-Varghese B, Kaufmann R. Decreased mRNA stability as a mechanism of glucocorticoid-mediated inhibition of vascular endothelial growth factor gene expression by cultured keratinocytes. J Invest Dermatol. 2001; 117(6):1581–1587.

    Article  CAS  PubMed  Google Scholar 

  51. Logie JJ, Ali S, Marshall KM, Heck MM, Walker BR, Hadoke PW. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One. 2010;5(12):e14476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, Mathews HL. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun. 2011; 25(2):239–249.

    Article  CAS  PubMed  Google Scholar 

  53. Ekstrand J, Hellsten J, Tingstrom A. Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci Lett. 2008;442(3):203–207.

    Article  CAS  PubMed  Google Scholar 

  54. Lazarus A, Keshet E. Vascular endothelial growth factor and vascular homeostasis. Proc Am Thorac Soc. 2011;8(6):508–511.

    Article  CAS  PubMed  Google Scholar 

  55. Cai J, Jiang WG, Ahmed A, Boulton M. Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Micro-vasc Res. 2006;71(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  56. Park CW, Kim HW, Lim JH, et al. Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS axis in db/db mice. Diabetes. 2009;58(11):2666–2676.

    Article  CAS  PubMed  Google Scholar 

  57. Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta. 2004;1654(1):13–22.

    CAS  PubMed  Google Scholar 

  58. van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–212.

    Article  PubMed  CAS  Google Scholar 

  59. Clark IM, Swingler TE, Sampieri CL, Edwards DR. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 2008;40(6-7):1362–1378.

    Article  CAS  PubMed  Google Scholar 

  60. De Paiva CS, Corrales RM, Villarreal AL, et al. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83(3):526–535.

    Article  PubMed  CAS  Google Scholar 

  61. Hakki SS, Hakki EE, Nohutcu RM. Regulation of matrix metallo-proteinases and tissue inhibitors of matrix metalloproteinases by basic fibroblast growth factor and dexamethasone in periodontal ligament cells. J Periodontal Res. 2009;44(6):794–802.

    Article  CAS  PubMed  Google Scholar 

  62. Liu X, Han Q, Sun R, Li Z. Dexamethasone regulation of matrix metalloproteinase expression in experimental pneumococcal meningitis. Brain Res. 2008;1207:237–243.

    Article  CAS  PubMed  Google Scholar 

  63. Yigit O, Acioglu E, Gelisgen R, Server EA, Azizli E, Uzun H. The effect of corticosteroid on metalloproteinase levels of nasal polyposis. Laryngoscope. 2011;121(3):667–673.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang J, Burridge KA, Friedman MH. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am J Physiol Heart Circ Physiol. 2008;295(4):H1556–H1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F. Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res. 2002;11(1):81–90.

    Article  PubMed  Google Scholar 

  66. Kaji K, Yoshiji H, Kitade M, et al. Selective aldosterone blocker, eplerenone, attenuates hepatocellular carcinoma growth and angiogenesis in mice. Hepatol Res. 2010;40(5):540–549.

    Article  CAS  PubMed  Google Scholar 

  67. Lai L, Pen A, Hu Y, et al. Aldosterone upregulates vascular endothelial growth factor expression in mouse cortical collecting duct epithelial cells through classic mineralocorticoid receptor. Life Sci. 2007;81(7):570–576.

    Article  CAS  PubMed  Google Scholar 

  68. Messaoudi S, Milliez P, Samuel JL, Delcayre C. Cardiac aldoster-one overexpression prevents harmful effects of diabetes in the mouse heart by preserving capillary density. FASEB J. 2009; 23(7):2176–2185.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Khorram MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorram, O., Ghazi, R., Chuang, TD. et al. Excess Maternal Glucocorticoids in Response to In Utero Undernutrition Inhibit Offspring Angiogenesis. Reprod. Sci. 21, 601–611 (2014). https://doi.org/10.1177/1933719113508819

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113508819

Keywords

Navigation