Skip to main content

Advertisement

Log in

Human Ovarian Tissue Cortex Surrounding Benign and Malignant Lesions

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

To quantify the number of follicles in patients with ovarian pathologies, benign and malignant, in pregnant and nonpregnant states and to determine how the presence of ovarian masses and BRCA status affects follicular counts.

Materials and Methods

Slides from 134 reproductive-aged women undergoing oophorectomy were examined using light microscopy by 3 independent counters blinded to the diagnosis. In all, 20 patients had cancer, 69 had benign conditions, and 35 patients were BRCA+ or had a strong family history of breast and/or ovarian cancer. In all, 10 women were either pregnant or immediately postpartum.

Results

Patients undergoing risk-reducing surgery had significantly decreased follicle count compared to physiologic control. Patients with cancer had significantly decreased counts compared to all other groups. There were no differences within the benign cohort.

Conclusions

When compared to benign masses, the cortex surrounding an ovarian malignancy has decreased follicle density. The stretch impact may minimize any impact on total follicle numbers. Furthermore, there may be a proliferation of ovarian stroma, with the same number of follicles spread over a larger surface area. This information is important when counseling women with ovarian masses regarding the use of ovarian tissue cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oktay K, Rodriguez-Wallberg K, Schover L. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360(25):2681; author reply 2682–2683.

    Google Scholar 

  2. Schover LR. Patient attitudes toward fertility preservation. Pediatr Blood Cancer. 2009;53(2):281–284.

    Article  PubMed  Google Scholar 

  3. Partridge AH, Gelber S, Peppercorn J, et al. Web-based survey of fertility issues in young women with breast cancer. J Clin Oncol. 2004;22(20):4174–4183.

    Article  PubMed  Google Scholar 

  4. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360(9):902–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim SS. Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril. 2006;85(1): 1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Sonmezer M, Oktay K. Fertility preservation in female patients. Hum Reprod Update. 2004;10(3):251–266.

    Article  PubMed  Google Scholar 

  7. Hirshfeld-Cytron J, Gracia C, Woodruff TK. Nonmalignant diseases and treatments associated with primary ovarian failure: an expanded role for fertility preservation. J Womens Health (Larchmt). 2011;20(10):1467–1477.

    Article  Google Scholar 

  8. Roberts JE, Oktay K. Fertility preservation: a comprehensive approach to the young woman with cancer. J Natl Cancer Inst Monogr. 2005(34):57–59.

    Article  Google Scholar 

  9. Poirot C, Vacher-Lavenu MC, Helardot P, Guibert J, Brugieres L, Jouannet P. Human ovarian tissue cryopreservation: indications and feasibility. Hum Reprod. 2002;17(6):1447–1452.

    Article  PubMed  Google Scholar 

  10. Fertility preservation and reproduction in cancer patients. Fertil Steril. 2005;83(6):1622–1628.

    Article  Google Scholar 

  11. Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril. 2010;94(6):2191–2196.

    Article  PubMed  Google Scholar 

  12. Silber SJ. Fresh ovarian tissue and whole ovary transplantation. Semin Reprod Med. 2009;27(6):479–485.

    Article  PubMed  Google Scholar 

  13. Silber SJ, DeRosa M, Pineda J, et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod. 2008;23(7):1531–1537.

    Article  CAS  PubMed  Google Scholar 

  14. Silber SJ, Gosden RG. Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure. N Engl J Med. 2007;356(13):1382–1384.

    Article  CAS  PubMed  Google Scholar 

  15. Silber SJ, Grudzinskas G, Gosden RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med. 2008;359(24):2617–2618.

    Article  CAS  PubMed  Google Scholar 

  16. Silber SJ, Lenahan KM, Levine DJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez-Serrano M, Novella-Maestre E, Rosello-Sastre E, Camarasa N, Teruel J, Pellicer A. Malignant cells are not found in ovarian cortex from breast cancer patients undergoing ovarian cortex cryopreservation. Hum Reprod. 2009;24(9):2238–2243.

    Article  PubMed  Google Scholar 

  18. Radford JA, Lieberman BA, Brison DR, et al. Orthotopic reim-plantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet. 2001; 357(9263):1172–1175.

    Article  CAS  PubMed  Google Scholar 

  19. Radford J. Autotransplantation of ovarian tissue and the risk of disease transmission. Eur J Obstet Gynecol Reprod Biol. 2004; 113(suppl 1):S48–S49.

    Article  PubMed  Google Scholar 

  20. Donnez J, Dolmans MM, Demylle D, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–1410.

    Article  CAS  PubMed  Google Scholar 

  21. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist. 2007;12(12):1437–1442.

    Article  PubMed  Google Scholar 

  22. Andersen CY, Rosendahl M, Byskov AG, et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23(10):2266–2272.

    Article  PubMed  Google Scholar 

  23. Meirow D, Hardan I, Dor J, et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod. 2008;23(5): 1007–1013.

    Article  PubMed  Google Scholar 

  24. Meirow D. Fertility preservation in cancer patients using stored ovarian tissue: clinical aspects. Curr Opin Endocrinol Diabetes Obes. 2008;15(6):536–547.

    Article  PubMed  Google Scholar 

  25. Oktay K, Buyuk E, Veeck L, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;363(9412):837–840.

    Article  PubMed  Google Scholar 

  26. Hirshfeld-Cytron J, Grobman WA, Milad MP. Fertility preservation for social indications: a cost-based decision analysis. Fertil Steril. 2012;97(3):665–670.

    Article  PubMed  Google Scholar 

  27. Hirshfeld-Cytron JE, Duncan FE, Xu M, Jozefik JK, Shea LD, Woodruff TK. Animal age, weight and estrus cycle stage impact the quality of in vitro grown follicles. Hum Reprod. 2011;26(9): 2473–2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maneschi F, Marasa L, Incandela S, Mazzarese M, Zupi E. Ovarian cortex surrounding benign neoplasms: a histologic study. Am J Obstet Gynecol. 1993;169(2 pt 1):388–393.

    Article  CAS  PubMed  Google Scholar 

  29. Schubert B, Canis M, Darcha C, et al. Human ovarian tissue from cortex surrounding benign cysts: a model to study ovarian tissue cryopreservation. Hum Reprod. 2005;20(7):1786–1792.

    Article  PubMed  Google Scholar 

  30. Donnez J, Nisolle M, Gillet N, Smets M, Bassil S, Casanas-Roux F. Large ovarian endometriomas. Hum Reprod. 1996;11(3):641–646.

    Article  CAS  PubMed  Google Scholar 

  31. Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol. 2010;28(2):240–244.

    Article  CAS  PubMed  Google Scholar 

  32. Bockstaele L, Tsepelidis S, Dechene J, Englert Y, Demeestere I. Safety of ovarian tissue autotransplantation for cancer patients. Obstet Gynecol Int. 2012;2012:495142.

    Article  PubMed  Google Scholar 

  33. Kim SS. Ovarian tissue banking for cancer patients. To do or not to do? Hum Reprod. 2003;18(9):1759–1761.

    Article  PubMed  Google Scholar 

  34. McLaughlin EA, McIver SC. Awakening the oocyte: controlling primordial follicle development. Reproduction. 2009;137(1): 1–11.

    Article  CAS  PubMed  Google Scholar 

  35. Bristol-Gould SK, Kreeger PK, Selkirk CG, et al. Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol. 2006;298(1):132–148.

    Article  CAS  PubMed  Google Scholar 

  36. Bristol-Gould SK, Kreeger PK, Selkirk CG, et al. Fate of the initial follicle pool: empirical and mathematical evidence supporting its sufficiency for adult fertility. Dev Biol. 2006;298(1):149–154.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–150.

    Article  CAS  PubMed  Google Scholar 

  38. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coccia ME, Rizzello F. Ovarian reserve. Ann N Y Acad Sci. 2008; 1127:27–30.

    Article  CAS  PubMed  Google Scholar 

  40. Gleicher N, Weghofer A, Barad DH. Defining ovarian reserve to better understand ovarian aging. Reprod Biol Endocrinol. 2011;9:23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculo-genesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18(1):73–91.

    Article  PubMed  Google Scholar 

  42. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–214.

    CAS  PubMed  Google Scholar 

  43. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1(2):81–87.

    Article  CAS  PubMed  Google Scholar 

  44. Faddy MJ, Gosden RG. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod. 1996;11(7):1484–1486.

    Article  CAS  PubMed  Google Scholar 

  45. Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod. 1994;50(3):653–663.

    Article  CAS  PubMed  Google Scholar 

  46. Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987; 81(2):433–442.

    Article  CAS  PubMed  Google Scholar 

  47. Gougeon A. Ovarian follicular growth in humans: ovarian ageing and population of growing follicles. Maturitas. 1998;30(2): 137–142.

    Article  CAS  PubMed  Google Scholar 

  48. http://seer.cancer.gov/statfacts/html/ovary.html. Accessed November 1, 2012.

  49. Chen J, Silver DP, Walpita D, et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998;2(3):317–328.

    Article  CAS  PubMed  Google Scholar 

  50. Cressman VL, Backlund DC, Avrutskaya AV, Leadon SA, Godfrey V, Koller BH. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol. 1999;19(10):7061–7075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V, Koller BH. Mammary tumor formation in p53- and BRCA1-deficient mice. Cell Growth Differ. 1999;10(1):1–10.

    CAS  PubMed  Google Scholar 

  52. French JD, Dunn J, Smart CE, Manning N, Brown MA. Disruption of BRCA1 function results in telomere lengthening and increased anaphase bridge formation in immortalized cell lines. Genes Chromosomes Cancer. 2006;45(3):277–289.

    Article  CAS  PubMed  Google Scholar 

  53. Xiong J, Fan S, Meng Q, et al. BRCA1 inhibition of telomerase activity in cultured cells. Mol Cell Biol. 2003;23(23):8668–8690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hassold T, Hunt P. Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr Opin Pediatr. 2009;21(6):703–708.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abir R, Ben-Haroush A, Felz C, et al. Selection of patients before and after anticancer treatment for ovarian cryopreservation. Hum Reprod. 2008;23(4):869–877.

    Article  CAS  PubMed  Google Scholar 

  56. Lee D. Ovarian Tissue Cryopreservation and Transplantation: Banking Reproductive Potential for the Future. In: Woodruff TK, Snyder KA, eds. Oncofertility. New York: Springer; 2007.

    Google Scholar 

  57. Ko SY, Barengo N, Ladanyi A, et al. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest. 2012;122(10):3603–3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Donnez J, Silber S, Andersen CY, et al. Children born after auto-transplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43(6):437–450.

    Article  PubMed  Google Scholar 

  59. Vanacker J, Luyckx V, Dolmans MM, et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33(26): 6079–6085.

    Article  CAS  PubMed  Google Scholar 

  60. Hornick J, Duncan FE, Shea L, Woodruff TK. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction. 2013;145(1):19–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ellen Pavone MD, MSCI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavone, M.E., Hirshfeld-Cytron, J., Tingen, C. et al. Human Ovarian Tissue Cortex Surrounding Benign and Malignant Lesions. Reprod. Sci. 21, 582–589 (2014). https://doi.org/10.1177/1933719113506498

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113506498

Keywords

Navigation