Skip to main content

Advertisement

Log in

TREM-1 Expression Is Increased in Human Placentas From Severe Early-Onset Preeclamptic Pregnancies Where It May Be Involved in Syncytialization

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia, a major cause of maternal and perinatal morbidity and mortality, is thought to be attributable to dysregulation of trophoblast invasion and differentiation. Microarray studies have shown that triggering receptor expressed on myeloid cells (TREM) 1, a cell surface molecule involved in the inflammatory response, is increased in preeclamptic placentas. The aim of this study was to determine the level of TREM-1 expression in severe early-onset preeclamptic placentas and its functional role in trophoblast differentiation. Placenta was obtained from women with severe early-onset preeclampsia (n = 19) and gestationally matched preterm controls placentas (n = 8). The TREM-1 expression was determined by quantitative reverse transcriptase polymerase chain reaction and Western blotting. The effect of TREM-1 small interfering RNA on cell fusion and differentiation was assessed in BeWo cells. The effect of oxygen tension on TREM-1 levels, in basal or forskolin-treated BeWo cells, was also assessed. The TREM-1 was localized to the syncytiotrophoblast layer, and TREM-1 messenger RNA and protein expression was significantly increased in preeclamptic placentas. The BeWo cells treated with forskolin were associated with increased TREM-1 expression. The TREM-1 knockdown inhibited forskolin-induced expression of the differentiation marker β-human chorionic gonadotropin but had no effect on the cell-fusion marker E-cadherin. The increase in TREM-1 expression in BeWo cells treated with forskolin during normoxic conditions was reduced in forskolin-treated cells under hypoxic conditions. In conclusion, TREM-1 is increased in preeclamptic placentas and by forskolin treatment. Knockdown of TREM-1 by RNA interference inhibits cell differentiation but has no effect on cell–cell fusion. Finally, we show that TREM-1 upregulation is attenuated under hypoxic conditions in which cell differentiation is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of pree-clampsia. Annu Rev Pathol. 2010;5:173–192.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(suppl A):S32–S37.

    Article  PubMed  CAS  Google Scholar 

  3. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141–169.

    Article  PubMed  Google Scholar 

  4. Red-Horse K, Zhou Y, Genbacev O, et al. Trophoblast differentiation during embryo implantation and formation of the maternalfetal interface. J Clin Invest. 2004;114(6):744–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huppertz B, Gauster M. Trophoblast fusion. Adv Exp Med Biol. 2011;713:81–95.

    Article  CAS  PubMed  Google Scholar 

  6. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF III. Purification, characterization, and in vitro differentiation of cytotro-phoblasts from human term placentae. Endocrinology. 1986; 118(4):1567–1582.

    Article  CAS  PubMed  Google Scholar 

  7. Alsat E, Wyplosz P, Malassine A, et al. Hypoxia impairs cell fusion and differentiation process in human cytotrophoblast, in vitro. J Cell Physiol. 1996;168(2):346–353.

    Article  CAS  PubMed  Google Scholar 

  8. Coutifaris C, Kao LC, Sehdev HM, et al. E-cadherin expression during the differentiation of human trophoblasts. Development. 1991;113(3):767–77.

    CAS  PubMed  Google Scholar 

  9. Wyrwoll CS, Mark PJ, Waddell BJ. Directional secretion and transport of leptin and expression of leptin receptor isoforms in human placental BeWo cells. Mol Cell Endocrinol. 2005;241(1-2):73–79.

    Article  CAS  PubMed  Google Scholar 

  10. Magarinos MP, Sanchez-Margalet V, Kotler M, Calvo JC, Varone CL. Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod. 2007;76(2):203–210.

    Article  CAS  PubMed  Google Scholar 

  11. Benaitreau D, Dos Santos E, Leneveu MC, De Mazancourt P, Pecquery R, Dieudonne MN. Adiponectin promotes syncytialisation of BeWo cell line and primary trophoblast cells. Reprod Biol Endocrinol. 2010;8:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kelker MS, Foss TR, Peti W, et al. Crystal structure of human triggering receptor expressed on myeloid cells 1 (TREM-1) at 1.47 angstrom. J Mol Biol. 2004;342(4):1237–1248.

    Article  CAS  PubMed  Google Scholar 

  13. Allcock RJ, Barrow AD, Forbes S, Beck S, Trowsdale J. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur J Immunol. 2003;33(2):567–577.

    Article  CAS  PubMed  Google Scholar 

  14. Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol. 2006;7(12):1266–1273.

    Article  CAS  PubMed  Google Scholar 

  15. Ho CC, Liao WY, Wang CY, et al. TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Resp Crit Care. 2008;177(7):763–770.

    Article  CAS  Google Scholar 

  16. Bleharski JR, Kiessler V, Buonsanti C, et al. A role for triggering receptor expressed on myeloid cells—1 in host defense during the early-induced and adaptive phases of the immune response. J Immunol. 2003;170(7):3812–3818.

    Article  CAS  PubMed  Google Scholar 

  17. Bosco MC, Pierobon D, Blengio F, et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood. 2011;117(9):2625–2639.

    Article  CAS  PubMed  Google Scholar 

  18. Mihu D, Costin N, Mihu CM, Blaga LD, Pop RB. C-reactive protein, marker for evaluation of systemic inflammatory response in preeclampsia. Rev Med Chir Soc Med Nat Iasi. 2008;112(4): 1019–1025.

    CAS  PubMed  Google Scholar 

  19. Mazouni C, Capo C, Ledu R, et al. Preeclampsia: impaired inflammatory response mediated by Toll-like receptors. J Reprod Immunol. 2008;78(1):80–83.

    Article  CAS  PubMed  Google Scholar 

  20. Schiessl B. Inflammatory response in preeclampsia. Mol Aspects Med. 2007;28(2):210–219.

    Article  CAS  PubMed  Google Scholar 

  21. Redman CW, Sargent IL. Preeclampsia and the systemic inflammatory response. Semin Nephrol. 2004;24(6):565–570.

    Article  PubMed  Google Scholar 

  22. Gerretsen G, Huisjes HJ, Elema JD. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol. 1981;88(9):876–881.

    Article  CAS  PubMed  Google Scholar 

  23. Varkonyi T, Nagy B, Fule T, et al. Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta. 2011;32(suppl):S21–S29.

    Article  CAS  PubMed  Google Scholar 

  24. Nishizawa H, Ota S, Suzuki M, et al. Comparative gene expression profiling of placentas from patients with severe preeclampsia and unexplained fetal growth restriction. Reprod Biol Endocrinol. 2011;9:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990;186(2):306–316.

    Article  CAS  PubMed  Google Scholar 

  26. Lim R, Lappas M. Decreased expression of complement 3a receptor (C3aR) in human placentas from severe preeclamptic pregnancies. Eur J Obstet Gynecol Reprod Biol. 2012;165(2):194–198.

    Article  CAS  PubMed  Google Scholar 

  27. Lappas M, Mitton A, Lim R, Barker G, Riley C, Permezel M. SIRT1 is a novel regulator of key pathways of human labor. Biol Reprod. 2011;84(1):167–178.

    Article  CAS  PubMed  Google Scholar 

  28. Orendi K, Gauster M, Moser G, Meiri H, Huppertz B. The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins. Reproduction. 2010; 140(5):759–766.

    Article  CAS  PubMed  Google Scholar 

  29. Lanoix D, St-Pierre J, Lacasse AA, Viau M, Lafond J, Vaillan-court C. Stability of reference proteins in human placenta: general protein stains are the benchmark. Placenta. 2012;33(3): 151–156.

    Article  CAS  PubMed  Google Scholar 

  30. Strohmer H, Kiss H, Mosl B, Egarter C, Husslein P, Knofler M. Hypoxia downregulates continuous and interleukin-1-induced expression of human chorionic gonadotropin in choriocarcinoma cells. Placenta. 1997;18(7):597–604.

    Article  CAS  PubMed  Google Scholar 

  31. Huppertz B, Kaufmann P, Kingdom J. Trophoblast turnover in health and disease. Fetal Maternal Med Rev. 2002;13(2):103–118.

    Article  Google Scholar 

  32. Huppertz B, Kingdom JC. Apoptosis in the trophoblast—role of apoptosis in placental morphogenesis. J Soc Gynecol Investig. 2004;11(6):353–362.

    Article  CAS  PubMed  Google Scholar 

  33. Ray JE, Garcia J, Jurisicova A, Caniggia I. Mtd/Bok takes a swing: proapoptotic Mtd/Bok regulates trophoblast cell proliferation during human placental development and in preeclampsia. Cell Death Differ. 2010;17(5):846–859.

    Article  CAS  PubMed  Google Scholar 

  34. Gauster M, Moser G, Orendi K, Huppertz B. Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta. 2009;30(suppl A):S49–S54.

    Article  PubMed  CAS  Google Scholar 

  35. Jones CJ, Fox H. An ultrastructural and ultrahistochemical study of the human placenta in maternal essential hypertension. Placenta. 1981;2(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  36. Kudo Y, Boyd CA, Sargent IL, Redman CW. Hypoxia alters expression and function of syncytin and its receptor during tro-phoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim Biophys Acta. 2003;1638(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  37. Redman CW. Current topic: pre-eclampsia and the placenta. Placenta. 1991;12(4):301–308.

    Article  CAS  PubMed  Google Scholar 

  38. Aplin JD. Implantation, trophoblast differentiation and haemo-chorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci. 1991;99(pt 4):681–692.

    PubMed  Google Scholar 

  39. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97(2):540–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science. 1997;277(5332):1669–1672.

    Article  CAS  PubMed  Google Scholar 

  41. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21(suppl A):S25–S30.

    Article  PubMed  Google Scholar 

  42. Hung TH, Burton GJ. Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol. 2006;45(3):189–200.

    Article  PubMed  Google Scholar 

  43. Murata M, Fukushima K, Takao T, Seki H, Takeda S, Wake N. Oxidative stress produced by xanthine oxidase induces apoptosis in human extravillous trophoblast cells. J Reprod Dev. 2013; 59(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  44. Hu R, Jin H, Zhou S, Yang P, Li X. Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line BeWo. Placenta. 2007;28(5-6):399–407.

    Article  CAS  PubMed  Google Scholar 

  45. Scifres CM, Nelson DM. Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol. 2009;587(pt 14):3453–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bernischke K, Kaufmann P, Baergen R. Pathology of the Human Placenta. New York, NY: Springer Science.

  47. Frendo JL, Olivier D, Cheynet V, et al. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol. 2003;23(10):3566–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kudo Y, Boyd CA, Sargent IL, Redman CW, Lee JM, Freeman TC. An analysis using DNA microarray of the time course of gene expression during syncytialization of a human placental cell line (BeWo). Placenta. 2004;25(6):479–488.

    Article  CAS  PubMed  Google Scholar 

  49. Lin L, Xu B, Rote NS. The cellular mechanism by which the human endogenous retrovirus ERV-3 env gene affects proliferation and differentiation in a human placental trophoblast model, BeWo. Placenta. 2000;21(1):73–78.

    Article  CAS  PubMed  Google Scholar 

  50. Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000; 164(10):4991–4995.

    Article  CAS  PubMed  Google Scholar 

  51. Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol. 2003;3(6):445–453.

    Article  CAS  PubMed  Google Scholar 

  52. von Versen-Hoeynck FM, Hubel CA, Gallaher MJ, Gammill HS, Powers RW. Plasma levels of inflammatory markers neopterin, sialic acid, and C-reactive protein in pregnancy and preeclampsia. Am J Hypertens. 2009;22(6):687–692.

    Article  CAS  Google Scholar 

  53. Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol. 1997;37(3): 240–249.

    Article  CAS  PubMed  Google Scholar 

  54. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endo-toxin infusion in pregnant rats. Am J Obstet Gynecol. 1994; 171(1):158–164.

    Article  CAS  PubMed  Google Scholar 

  55. Tsukihara S, Harada T, Deura I, et al. Interleukin-1beta-induced expression of IL-6 and production of human chorionic gonadotropin in human trophoblast cells via nuclear factor-kappaB activation. Am J Reprod Immunol. 2004;52(3):218–223.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lappas PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, R., Barker, G. & Lappas, M. TREM-1 Expression Is Increased in Human Placentas From Severe Early-Onset Preeclamptic Pregnancies Where It May Be Involved in Syncytialization. Reprod. Sci. 21, 562–572 (2014). https://doi.org/10.1177/1933719113503406

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113503406

Keywords

Navigation