Skip to main content

Advertisement

Log in

Differential Regulation of Brain-Derived Neurotrophic Factor in Term and Preterm Preeclampsia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Our earlier studies in preeclampsia (PE) suggest a causal relationship between altered angiogenic factors and birth outcomes. Recent studies suggest that brain-derived neurotrophic factor (BDNF) can stimulate angiogenesis. The present study examines the levels of maternal and cord BDNF in women with PE (n = 106; full term [n = 60] and preterm [n = 46]) and normotensive women (n = 95; control) delivering at term. Maternal BDNF levels were lower (P < .05) in women with PE when compared to normotensive women. Cord BDNF levels were higher (P < .01) in women with PE delivering at term, while it was lower (P < .01) in women delivering preterm. Maternal BDNF levels were negatively associated with systolic and diastolic blood pressure (P < .01 for both). Our data for the first time suggest a possible role for BDNF in the pathophysiology of PE. Differential regulation of cord BDNF levels in preterm PE suggests a need to follow-up children to assess the neurodevelopmental effects in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilekis JV, Reddy UM, Roberts JM. Preeclampsia—a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci. 2007; 14(6):508–523.

    Article  CAS  PubMed  Google Scholar 

  2. Grill S, Rusterholz C, Zanetti-Dällenbach R, et al. Potential markers of preeclampsia—a review. Reprod Biol Endocrinol. 2009;7:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bhatnagar S, Trivedi SS, Madan T, Sarma PU, Bhattacharjee J. TNF-α and its association with nitric oxide synthase gene in preeclampsia. Int J Pharma Bio Sci. 2010;1(4):B323–B327.

    Google Scholar 

  4. Myatt L, Webster RP. Vascular biology of preeclampsia. J Throm Haemost. 2009;7(3):375–384.

    Article  CAS  Google Scholar 

  5. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension. 2001;38(3 pt 2):718–722.

    Article  CAS  PubMed  Google Scholar 

  6. Fam NP, Verma S, Kutryk M, Stewart DJ. Clinician guide to angiogenesis. Circulation. 2003;108(21):2613–2618.

    Article  PubMed  Google Scholar 

  7. Mehendale S, Kilari A, Dangat K, Taralekar V, Mahadik S, Joshi S. Fatty acids, antioxidants, and oxidative stress in pre-eclampsia. Int J Gynaecol Obstet. 2008;100(3):234–238.

    Article  CAS  PubMed  Google Scholar 

  8. Kulkarni A, Mehendale S, Pisal H, et al. Association of omega-3 fatty acids and homocysteine concentrations in pre-eclampsia. Clin Nutr. 2010;30(1):60–64.

    Article  PubMed  CAS  Google Scholar 

  9. Kulkarni A, Mehendale S, Yadav H, Kilari A, Taralekar V, Joshi S. Circulating angiogenic factors and their association with birth outcomes in pre-eclampsia. Hypertens Res. 2010;33(6):561–567.

    Article  CAS  PubMed  Google Scholar 

  10. Dangat KD, Mehendale SS, Yadav HR, et al. Long-chain polyunsaturated fatty acid composition of breast milk in pre-eclamptic mothers. Neonatology. 2010;97(3):190–194.

    Article  CAS  PubMed  Google Scholar 

  11. Duda DG, Jain RK. Pleiotropy of tissue-specific growth factors: from neurons to vessels via the bone marrow. J Clin Invest. 2005;115(3):596–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kermani P, Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med. 2007;17(4):140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawamura K, Kawamura N, Kumazawa Y, Kumagai J, Fujimoto T, Tanaka T. Brain-derived neurotrophic factor/tyrosine kinase B signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy. Endocrinology. 2011; 152(3): 1090–1100.

    Article  CAS  PubMed  Google Scholar 

  14. Mayeur S, Silhol M, Moitrot E, et al. Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human. Placenta. 2010;31(9):785–791.

    Article  CAS  PubMed  Google Scholar 

  15. Donovan MJ, Lin MI, Wiegn P, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development. 2000;127(21):4531–4540.

    CAS  PubMed  Google Scholar 

  16. Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T. Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology. 2009;150(8):3774–3782.

    Article  CAS  PubMed  Google Scholar 

  17. Vicario-Abejón C, Owens D, McKay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci. 2002;3(12):965–974.

    Article  PubMed  CAS  Google Scholar 

  18. Kodomari I, Wada E, Nakamura S, Wada K. Maternal supply of BDNF to mouse fetal brain through the placenta. Neurochem Int. 2009;54(2):95–98.

    Article  CAS  PubMed  Google Scholar 

  19. Dhobale M, Mehendale S, Pisal H, D’Souza V, Joshi S. Association of brain-derived neurotrophic factor and tyrosine kinase B receptor in pregnancy. Neuroscience. 2012;216:31–37.

    Article  CAS  PubMed  Google Scholar 

  20. Dhobale M, Mehendale S, Pisal H, Nimbargi V, Joshi S. Reduced maternal and cord nerve growth factor levels in preterm deliveries. Int J Dev Neurosci. 2012;30(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  21. Kilari A, Mehendale S, Pisal H, Panchanadikar T, Kale A, Joshi S. Nerve growth factor, birth outcome and pre-eclampsia. Int J Dev Neurosci. 2011;29(1):71–75.

    Article  CAS  PubMed  Google Scholar 

  22. Rehn AE, Van Den Buuse M, Copolov D, Briscoe T, Lambert G, Rees S. An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Neuroscience. 2004; 129(2):381–391.

    Article  CAS  PubMed  Google Scholar 

  23. Cannon TD, Yolken R, Buka S, Torrey EF. Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry. 2008;64(9):797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Many A, Fattal A, Leitner Y, Kupferminc MJ, Harel S, Jaffa A. Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia. Hypertens Pregnancy. 2003;22(1):25–29.

    Article  PubMed  Google Scholar 

  25. Ehrenstein V, Rothman KJ, Pedersen L, Hatch EE, Sørensen HT. Pregnancy-associated hypertensive disorders and adult cognitive function among Danish conscripts. Am J Epidemiol. 2009; 170(8):1025–1031.

    Article  PubMed  Google Scholar 

  26. Phillips JK, Janowiak M, Badger GJ, Bernstein IM. Evidence for distinct preterm and term phenotypes of preeclampsia. J Matern Fetal Neonatal Med. 2010;23(7):622–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pillai A, Kale A, Joshi S, et al. Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. Int J Neuropsychopharmacol. 2010;13(4):535–539.

    Article  CAS  PubMed  Google Scholar 

  28. Hornbeck P. Enzyme-linked immunosorbent assays. In: Coico R, ed. Current Protocols in Immunology. Vol 1. Hoboken, NJ: John Wiley & Sons, Inc; 1994; pp 1.2.1-2.1.22.

    Google Scholar 

  29. Fujita K, Tatsumi K, Kondoh E, et al. Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors. Placenta. 2011;32(10):737–744.

    Article  CAS  PubMed  Google Scholar 

  30. Malamitsi-Puchner A, Nikolaou KE, Economou E, et al. Intrauterine growth restriction and circulating neurotrophin levels at term. Early Hum Dev. 2007;83(7):465–469.

    Article  CAS  PubMed  Google Scholar 

  31. Kim TS, Kim DJ, Lee H, Kim YK. Increased plasma brain-derived neurotrophic factor levels in chronic smokers following unaided smoking cessation. Neurosci Lett. 2007;423(1):53–57.

    Article  CAS  PubMed  Google Scholar 

  32. Lommatzsch M, Zingler D, Schuhbaeck K, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging. 2005;26(1):115–123.

    Article  CAS  PubMed  Google Scholar 

  33. Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res. 2006;84(8):1656–1668.

    Article  CAS  PubMed  Google Scholar 

  34. Nikolaou KE, Malamitsi-Puchner A, Boutsikou T, et al. The varying patterns of neurotrophin changes in the perinatal period. Ann N Y Acad Sci. 2006;1092:426–433.

    Article  CAS  PubMed  Google Scholar 

  35. Dieni S, Rees S. BDNF and TrkB protein expression is altered in the fetal hippocampus but not cerebellum after chronic prenatal compromise. Exp Neurol. 2005;92(2):265–273.

    Article  CAS  Google Scholar 

  36. Malamitsi-Puchner A, Nikolaou KE, Puchner KP. Intrauterine growth restriction, brain-sparing effect, and neurotrophins. Ann N YAcad Sci. 2006;1092:293–296.

    Article  CAS  PubMed  Google Scholar 

  37. Malamitsi-Puchner A, Economou E, Rigopoulou O, Boutsikou T. Perinatal changes of brain-derived neurotrophic factor in pre- and fullterm neonates. Early Hum Dev. 2004;76(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  38. Chouthai NS, Sampers J, Desai N, Smith GM. Changes in neurotrophin levels in umbilical cord blood from infants with different gestational ages and clinical conditions. Pediatr Res. 2003;53(6):965-969.

    Article  CAS  PubMed  Google Scholar 

  39. Roth TL, Sweatt JD. Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry. 2011;52(4):398–408.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Branchi I, D’Andrea I, Fiore M, Di Fausto V, Aloe L, Alleva E. Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain. Biol Psychiatry. 2006;60(7):690–696.

    Article  CAS  PubMed  Google Scholar 

  41. Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004;21(10):1457–1467.

    Article  PubMed  Google Scholar 

  42. Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19(7):1699–1707.

    Article  PubMed  Google Scholar 

  43. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant’Anna M, Cunha AB, Post RM. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr. 2008;30(3):243–245.

    Article  PubMed  Google Scholar 

  44. Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294(2):H541-H550.

    Article  CAS  PubMed  Google Scholar 

  45. Hirooka Y, Sagara Y, Kishi T, Sunagawa K. Oxidative stress and central cardiovascular regulation—pathogenesis of hypertension and therapeutic aspects. Circ J. 2010;74(5):827–835.

    Article  CAS  PubMed  Google Scholar 

  46. Park HR, Park M, Choi J, Park KY, Chung HY, Lee J.A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482(3):235–239.

    Article  CAS  PubMed  Google Scholar 

  47. Qiu C, Sanchez SE, Lam N, Garcia P, Williams MA. Associations of depression and depressive symptoms with preeclampsia: resuits from a Peruvian case-control study. BMC Womens Health. 2007;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Craici I, Wagner S, Garovic VD. Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008;2(4):249–259.

    Article  PubMed  Google Scholar 

  49. Ram K, Santoro N. Does pregnancy-induced hypertension increase the risk of developing metabolic syndrome? Nat Clin Pract Endocrinol Metab. 2008;1(2):76–77.

    Article  Google Scholar 

  50. Lorgis L, Amoureux S, Vergely C, Zeiler M, Cottin Y, Rochette L. Brain-derived neurotrophic factor (BDNF): role of this neurotrophin in cardiovascular physiopathology [in French]. Ann Cardiol Angeiol. 2009;58(2):99–103.

    Article  CAS  Google Scholar 

  51. Pinheiro RT, Pinheiro KA, da Cunha Coelho FM, et al. Brain-Derived Neurotrophic Factor levels in women with postpartum affective disorder and suicidality. Neurochem Res. 2012;37(10): 2229–2234.

    Article  CAS  PubMed  Google Scholar 

  52. Chaldakov GN, Fiore M, Stankulov IS, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res. 2008;146:279–289.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana R. Joshi PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, V.A., Kilari, A.S., Joshi, A.A. et al. Differential Regulation of Brain-Derived Neurotrophic Factor in Term and Preterm Preeclampsia. Reprod. Sci. 21, 230–235 (2014). https://doi.org/10.1177/1933719113493512

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113493512

Keywords

Navigation