Skip to main content
Log in

Metabolic Pathways Involved in 2-Methoxyestradiol Synthesis and Their Role in Preeclampsia

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) remains a major cause of maternal/fetal morbidity–mortality worldwide. The first stage of PE is characterized by placental hypoxia due to a relative reduction in uteroplacental blood flow, resulting from restricted trophoblast invasion. However, hypoxia is also an essential element for the success of invasion. Under hypoxic conditions, 2-methoxyestradiol (2-ME) could induce the differentiation of cytotrophoblast cells into an invasive phenotype in culture. 2-Methoxyestradiol is generated by catechol-O-methyltransferase, an enzyme involved in the metabolic pathway of estrogens. During pregnancy, circulating 2-ME levels increase significantly when compared to the menstrual cycle. Interestingly, plasma levels of 2-ME are lower in women with PE than in controls, and these differences are apparent weeks or even months before the clinical manifestations of the disease. This article reviews the metabolic pathways involved in 2-ME synthesis and discusses the roles of these pathways in normal and abnormal pregnancies, with particular emphasis on PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACOG technical bulletin. Hypertension in pregnancy. Number 219—January 1996 (replaces no. 91, February 1986). Committee on technical bulletins of the American college of obstetricians and gynecologists. Int J Gynaecol Obstet. 1996;53(2):175–183.

    Article  Google Scholar 

  2. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McDonald SD, Malinowski A, Zhou Q, Yusuf S, Devereaux PJ. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J. 2008;156(5):918–930.

    Article  PubMed  Google Scholar 

  4. Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am J Obstet Gynecol. 2000;183(1):S1–S22.

  5. Knofler M, Pollheimer J. IFPA award in placentology lecture: molecular regulation of human trophoblast invasion. Placenta. 2012;33(suppl):S55–S62.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996;175(5):1365–1370.

    Article  CAS  PubMed  Google Scholar 

  7. Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med. 2006;11(5):309–316.

    Article  CAS  PubMed  Google Scholar 

  8. Redman CW. Current topic: pre-eclampsia and the placenta. Placenta. 1991;12(4):301–308.

    Article  CAS  PubMed  Google Scholar 

  9. Pijnenborg R, Vercruysse L, Brosens I. Deep placentation. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):273–285.

    Article  CAS  PubMed  Google Scholar 

  10. Hunkapiller NM, Fisher SJ. Chapter 12. Placental remodeling of the uterine vasculature. Methods Enzymol. 2008;445:281–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitley GS, Cartwright JE. Trophoblast-mediated spiral artery remodelling: a role for apoptosis. J Anat. 2009;215(1):21–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lyall F. Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia. Aust N Z J Obstet Gynaecol. 2006;46(4):266–273.

    Article  PubMed  Google Scholar 

  13. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–191.

    CAS  PubMed  Google Scholar 

  14. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93(10):1049–1059.

    Article  CAS  PubMed  Google Scholar 

  15. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–285.

    CAS  PubMed  Google Scholar 

  16. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science. 1997;277(5332):1669–1672.

    Article  CAS  PubMed  Google Scholar 

  17. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8(5):588–594.

    Article  CAS  PubMed  Google Scholar 

  18. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–1237.

    Article  CAS  PubMed  Google Scholar 

  19. Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275.

    Article  CAS  PubMed  Google Scholar 

  20. Caniggia I, Mostachfi H, Winter J, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest. 2000; 105(5):577–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Librach CL, Werb Z, Fitzgerald ML, et al.. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol. 1991;113(2):437–449.

    Article  CAS  PubMed  Google Scholar 

  22. Lee SB, Wong AP, Kanasaki K, et al. Preeclampsia: 2-methoxyestradiol induces cytotrophoblast invasion and vascular development specifically under hypoxic conditions. Am J Pathol. 2010;176(2):710–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2 pt 1):499–506.

    Article  CAS  PubMed  Google Scholar 

  24. Kanasaki K, Palmsten K, Sugimoto H, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453(7198):1117–1121.

    Article  CAS  PubMed  Google Scholar 

  25. LaVallee TM, Zhan XH, Herbstritt CJ, Kough EC, Green SJ, Pribluda VS. 2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta. Cancer Res. 2002;62(13):3691–3697.

    Google Scholar 

  26. Schumacher G, Kataoka M, Roth JA, Mukhopadhyay T. Potent antitumor activity of 2-methoxyestradiol in human pancreatic cancer cell lines. Clin Cancer Res. 1999;5(3):493–499.

    CAS  PubMed  Google Scholar 

  27. Fotsis T, Zhang Y, Pepper MS, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature. 1994;368(6468):237–239.

    Article  CAS  PubMed  Google Scholar 

  28. Zacharia LC, Jackson EK, Gillespie DG, Dubey RK. Increased 2-methoxyestradiol production in human coronary versus aortic vascular cells. Hypertension. 2001;37(2 part 2):658–662.

    Article  CAS  PubMed  Google Scholar 

  29. Shang W, Konidari I, Schomberg DW. 2-Methoxyestradiol, an endogenous estradiol metabolite, differentially inhibits granulosa and endothelial cell mitosis: a potential follicular antiangiogenic regulator. Biol Reprod. 2001;65(2):622–627.

    Article  CAS  PubMed  Google Scholar 

  30. Becker CM, Rohwer N, Funakoshi T, et al. 2-methoxyestradiol inhibits hypoxia-inducible factor-1 {alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol. 2008; 172(2):534–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23(2): 165–172.

    Article  CAS  PubMed  Google Scholar 

  32. Pasquier E, Sinnappan S, Munoz MA, Kavallaris M. ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol Cancer Ther. 2010;9(5):1408–1418.

    Article  CAS  PubMed  Google Scholar 

  33. Hou Y, Meyers CY, Akomeah M. A short, economical synthesis of 2-methoxyestradiol, an anticancer agent in clinical trials. J Org Chem. 2009;74(16):6362–6364.

    Article  CAS  PubMed  Google Scholar 

  34. Berg D, Sonsalla R, Kuss E. Concentrations of 2-methoxyoestrogens in human serum measured by a heterologous immunoassay with an 125I-labelled ligand. Acta Endocrinol (Copenh). 1983;103(2):282–288.

    Article  CAS  Google Scholar 

  35. Barnes CM, McElrath TF, Folkman J, Hansen AR. Correlation of 2-methoxyestradiol levels in cord blood and complications of prematurity. Pediatr Res. 2010;67(5):545–550.

    Article  CAS  PubMed  Google Scholar 

  36. Pérez-Sepúlveda A, Torres MJ, Valenzuela FJ, et al. Low 2-methoxyestradiol levels at the first trimester of pregnancy are associated with the development of pre-eclampsia. Prenat Diagn. 2012;32(11):1–6.

    Article  CAS  Google Scholar 

  37. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.

    CAS  PubMed  Google Scholar 

  38. Palmer K, Saglam B, Whitehead C, Stock O, Lappas M, Tong S. Severe early-onset preeclampsia is not associated with a change in placental catechol O-methyltransferase (COMT) expression. Am J Pathol. 2011;178(6):2484–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6(3):243–250.

    Article  CAS  PubMed  Google Scholar 

  40. Syvanen AC, Tilgmann C, Rinne J, Ulmanen I. Genetic polymorphism of catechol-O-methyltransferase (COMT): correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and parkinsonian patients in Finland. Pharmacogenetics. 1997; 7(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  41. Sata F, Yamada H, Suzuki K, et al. Functional maternal catechol-O-methyltransferase polymorphism and fetal growth restriction. Pharmacogenet Genomics. 2006;16(11):775–781.

    Article  CAS  PubMed  Google Scholar 

  42. Stanley JL, Andersson IJ, Poudel R, et al. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model. Hypertension. 2012;59(5):1021–1028.

    Article  CAS  PubMed  Google Scholar 

  43. Barnea ER, MacLusky NJ, DeCherney AH, Naftolin F. Catechol-o-methyl transferase activity in the human term placenta. Am J Perinatol. 1988;5(2):121–127.

    Article  CAS  PubMed  Google Scholar 

  44. Roten LT, Fenstad MH, Forsmo S, et al. A low COMT activity haplotype is associated with recurrent preeclampsia in a Norwegian population cohort (HUNT2). Mol Hum Reprod. 2011; 17(7):439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim JH, Kim SY, Kim do J, et al. Genetic polymorphism of catechol-O-methyltransferase and cytochrome P450c17alpha in preeclampsia. Pharmacogenet Genomics. 2010;20(10):605–610.

    Article  CAS  PubMed  Google Scholar 

  46. Liang S, Liu X, Fan P, et al. Association between Val 158Met functional polymorphism in the COMT gene and risk of preeclampsia in a Chinese population. Arch Med Res. 2012;43(2):154–158.

    Article  CAS  PubMed  Google Scholar 

  47. Hill LD, York TP, Kusanovic JP, et al. Epistasis between COMT and MTHFR in maternal-fetal dyads increases risk for preeclampsia. PLoS One. 2011;6(1):e16681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ananth CV, Elsasser DA, Kinzler WL, et al. Polymorphisms in methionine synthase reductase and betaine-homocysteine S-methyltransferase genes: risk of placental abruption. Mol Genet Metab. 2007;91(1):104–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma P, Senthilkumar RD, Brahmachari V, et al. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis. 2006;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Walker MC, Smith GN, Perkins SL, Keely EJ, Garner PR. Changes in homocysteine levels during normal pregnancy. Am J Obstet Gynecol. 1999;180(3 pt 1):660–664.

    Article  CAS  PubMed  Google Scholar 

  51. Cikot RJ, Steegers-Theunissen RP, Thomas CM, de Boo TM, Merkus HM, Steegers EA. Longitudinal vitamin and homocysteine levels in normal pregnancy. Br J Nutr. 2001;85(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy MM, Scott JM, McPartlin JM, Fernandez-Ballart JD. The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution, or a decrease in albumin in a longitudinal study. Am J Clin Nutr. 2002;76(3):614–619.

    Article  CAS  PubMed  Google Scholar 

  53. Steegers-Theunissen RP, Wathen NC, Eskes TK, van Raaij-Selten B, Chard T. Maternal and fetal levels of methionine and homocysteine in early human pregnancy. Br J Obstet Gynaecol. 1997;104(1):20–24.

    Article  CAS  PubMed  Google Scholar 

  54. Powers RW, Evans RW, Majors AK, et al. Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation. Am J Obstet Gynecol. 1998; 179(6 pt 1):1605–1611.

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Trudinger BJ, Duarte N, Wilcken DE, Wang XL. Elevated circulating homocyst(e)ine levels in placental vascular disease and associated pre-eclampsia. BJOG. 2000;107(7):935–938.

    Article  CAS  PubMed  Google Scholar 

  56. D’Anna R, Baviera G, Corrado F, Ientile R, Granese D, Stella NC. Plasma homocysteine in early and late pregnancies complicated with preeclampsia and isolated intrauterine growth restriction. Acta Obstet Gynecol Scand. 2004;83(2):155–158.

    Article  PubMed  Google Scholar 

  57. Makedos G, Papanicolaou A, Hitoglou A, et al. Homocysteine, folic acid and B12 serum levels in pregnancy complicated with preeclampsia. Arch Gynecol Obstet. 2007;275(2):121–124.

    Article  CAS  PubMed  Google Scholar 

  58. Lopez-Quesada E, Vilaseca MA, Lailla JM. Plasma total homocysteine in uncomplicated pregnancy and in preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2003;108(1):45–49.

    Article  CAS  PubMed  Google Scholar 

  59. Cotter AM, Molloy AM, Scott JM, Daly SF. Elevated plasma homocysteine in early pregnancy: a risk factor for the development of nonsevere preeclampsia. Am J Obstet Gynecol. 2003; 189(2):391–394.

    Article  CAS  PubMed  Google Scholar 

  60. Robertson L, Wu O, Langhorne P, et al. Thrombophilia in pregnancy: a systematic review. Br J Haematol. 2006;132(2):171–196.

    Article  CAS  PubMed  Google Scholar 

  61. Valenzuela FJ, Perez-Sepulveda A, Torres MJ, Correa P, Repetto GM, Illanes SE. Pathogenesis of preeclampsia: the genetic component. J Pregnancy. 2012;2012:632732.

    Article  PubMed  Google Scholar 

  62. Shenoy V, Kanasaki K, Kalluri R. Pre-eclampsia: connecting angiogenic and metabolic pathways. Trends Endocrinol Metab. 2010;21(9):529–536.

    Article  CAS  PubMed  Google Scholar 

  63. Troisi R, Potischman N, Roberts JM, et al. Correlation of serum hormone concentrations in maternal and umbilical cord samples. Cancer Epidemiol Biomarkers Prev. 2003;12(5):452–456.

    CAS  PubMed  Google Scholar 

  64. Ghorashi V, Sheikhvatan M. The relationship between serum concentration of free testosterone and pre-eclampsia. Endokrynol Pol. 2008;59(5):390–392.

    PubMed  Google Scholar 

  65. Carlsen SM, Romundstad P, Jacobsen G. Early second-trimester maternal hyperandrogenemia and subsequent preeclampsia: a prospective study. Acta Obstet Gynecol Scand. 2005;84(2): 117–121.

    Article  PubMed  Google Scholar 

  66. Sowers MR, Wilson AL, Kardia SR, Chu J, Ferrell R. Aromatase gene (CYP 19) polymorphisms and endogenous androgen concentrations in a multiracial/multiethnic, multisite study of women at midlife. Am J Med. 2006;119(9 suppl 1):S23–S30.

    Article  CAS  PubMed  Google Scholar 

  67. Somner J, McLellan S, Cheung J, et al. Polymorphisms in the P450 c17 (17-hydroxylase/17,20-Lyase) and P450 c19 (aromatase) genes: association with serum sex steroid concentrations and bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2004;89(1):344–351.

    Article  CAS  PubMed  Google Scholar 

  68. Kidokoro K, Ino K, Hirose K, et al. Association between CYP19A1 polymorphisms and sex hormones in postmenopausal Japanese women. J Hum Genet. 2009;54(2):78–85.

    Article  CAS  PubMed  Google Scholar 

  69. Hertig A, Liere P, Chabbert-Buffet N, et al.. Steroid profiling in preeclamptic women: evidence for aromatase deficiency. Am J Obstet Gynecol. 2010;203(5):477 e471–477 e479.

    Article  CAS  Google Scholar 

  70. Czajka-Oraniec I, Simpson ER. Aromatase research and its clinical significance. Endokrynol Pol. 2010;61(1):126–134.

    CAS  PubMed  Google Scholar 

  71. Simpson ER, Clyne C, Rubin G, et al. Aromatase–a brief overview. Annu Rev Physiol. 2002;64:93–127.

    Article  CAS  PubMed  Google Scholar 

  72. Conley A, Hinshelwood M. Mammalian aromatases. Reproduction. 2001;121(5):685–695.

    Article  CAS  PubMed  Google Scholar 

  73. Hong Y, Li H, Yuan YC, Chen S. Molecular characterization of aromatase. Ann N Y Acad Sci. 2009;1155:112–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou H, Fu G, Yu H, Peng C. Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway. Reprod Biol Endocrinol. 2009;7:146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Williams MA, Woelk GB, King IB, Jenkins L, Mahomed K. Plasma carotenoids, retinol, tocopherols, and lipoproteins in preeclamptic and normotensive pregnant Zimbabwean women. Am J Hypertens. 2003;16(8):665–672.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu SJ, Li Y, Li H, et al. Retinoic acids promote the action of aromatase and 17beta-hydroxysteroid dehydrogenase type 1 on the biosynthesis of 17beta-estradiol in placental cells. J Endocrinol. 2002;172(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  77. Milczarek R, Sokolowska E, Hallmann A, Klimek J. The NADPH- and iron-dependent lipid peroxidation in human placental microsomes. Mol Cell Biochem. 2007;295(1–2): 105–111.

    Article  CAS  PubMed  Google Scholar 

  78. Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217–252.

    Article  CAS  PubMed  Google Scholar 

  79. Jiang B, Kamat A, Mendelson CR. Hypoxia prevents induction of aromatase expression in human trophoblast cells in culture: potential inhibitory role of the hypoxia-inducible transcription factor Mash-2 (mammalian achaete-scute homologous protein-2). Mol Endocrinol. 2000;14(10):1661–1673.

    Article  CAS  PubMed  Google Scholar 

  80. Caniggia I, Winter JL. Adriana and Luisa Castellucci Award lecture 2001. Hypoxia inducible factor-1: oxygen regulation of trophoblast differentiation in normal and pre-eclamptic pregnancies—a review. Placenta. 2002;23(suppl A):S47–S57.

    Article  PubMed  Google Scholar 

  81. Tao MH, Cai Q, Zhang ZF, et al. Polymorphisms in the CYP19A1 (aromatase) gene and endometrial cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev. 2007;16(5):943–949.

    Article  CAS  PubMed  Google Scholar 

  82. Ma CX, Adjei AA, Salavaggione OE, et al. Human aromatase: gene resequencing and functional genomics. Cancer Res. 2005; 65(23):11071–11082.

    Article  CAS  PubMed  Google Scholar 

  83. Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–2092.

    Article  CAS  PubMed  Google Scholar 

  84. Nowell S, Falany CN. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene. 2006;25(11):1673–1678.

    Article  CAS  PubMed  Google Scholar 

  85. Adjei AA, Thomae BA, Prondzinski JL, Eckloff BW, Wieben ED, Weinshilboum RM. Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: gene resequencing and functional genomics. Br J Pharmacol. 2003;139(8):1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aksoy IA, Wood TC, Weinshilboum R. Human liver estrogen sulfotransferase: identification by cDNA cloning and expression. Biochem Biophys Res Commun. 1994;200(3):1621–1629.

    Article  CAS  PubMed  Google Scholar 

  87. Song WC, Moore R, McLachlan JA, Negishi M. Molecular characterization of a testis-specific estrogen sulfotransferase and aberrant liver expression in obese and diabetogenic C57BL/KsJ-db/db mice. Endocrinology. 1995;136(6):2477–2484.

    Article  CAS  PubMed  Google Scholar 

  88. Falany JL, Azziz R, Falany CN. Identification and characterization of cytosolic sulfotransferases in normal human endometrium. Chem Biol Interact. 1998;109(1–3):329–339.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián E. Illanes MS, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Sepulveda, A., España-Perrot, P.P., Norwitz, E.R. et al. Metabolic Pathways Involved in 2-Methoxyestradiol Synthesis and Their Role in Preeclampsia. Reprod. Sci. 20, 1020–1029 (2013). https://doi.org/10.1177/1933719113477483

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113477483

Keywords

Navigation