Skip to main content

Advertisement

Log in

Role of Mitochondria in Ciprofloxacin-Induced Apoptosis in Murine Sperm Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Rationale

Ciprofloxacin (CPFX) has been reported to inhibit cell growth and induce apoptosis in certain eukaryotic cells. The role of the mitochondrial pathway in CPFX-induced apoptosis in cultured murine sperm cells was investigated.

Methods and Results

Sperm cells (5×103 cells/well) from 8-week-old NMRI male mice were cultured in 150 μL of HAM’s F10 with 25 mmol/L (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid ) HEPES and 10% human serum albumin and were incubated with 50, 100, 200, 400, and 800 µg/mL CPFX for 24 and 36 hours. Cell cytotoxicity, mitochondrial membrane potential (ΔΨM), and concentrations of caspase 3 and caspase 9 were assessed in CPFX-treated cultured murine sperm cells by MTT (3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide) , JC-1 (5, 5á, 6, 6á-tetrachloro-1, 1á, 3, 3á-tetraethylbenzimidazol-carbocyanine iodide)aggregation, and caspase 3 and caspase 9 assays, respectively. Increasing doses of CPFX showed significant cytotoxicity (EC50 = 146.73 μg/mL). Significant loss of ΔΨm was observed in sperm cells treated with ≥50 μg/mL CPFX for 36 hours. Significant increases in caspase 9 and caspase 3 concentrations were also found in cells treated with ≥50 μg/mL CPFX for 24 and 36 hours, respectively (P < .001).

Conclusions

Effects of clinically reachable doses of CPFX on cultured murine sperm cells were investigated and revealed that it may cause sperm cell toxicity by induction of apoptosis through the mitochondrial pathway in the clinically reachable concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menschik M, Neumuller J, Steiner CW, et al. Effects of ciprofloxacin and ofloxacin on adult human cartilage in vitro. Antimicrob Agents Chemother. 1997;41(11):2562–2565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma PC, Jain A, Jain S, Pahwa R, Yar MS. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem. 2010;25(4):577–589.

    Article  CAS  PubMed  Google Scholar 

  3. Kloskowski T, Gurtowska N, Drewa T. Does ciprofloxacin have an obverse and a reverse? Pulm Pharmacol Ther. 2010;23(5): 373–375.

    Article  CAS  PubMed  Google Scholar 

  4. Stahlmann R. Clinical toxicological aspects of fluoroquinolones. Toxicol Lett. 2002;127(1–3):269–277.

    Article  CAS  PubMed  Google Scholar 

  5. Khaki A, Heidari M, Ghaffari Novin M, Khaki AA. Adverse effects of ciprofloxacin on testis apoptosis and sperm parameters in rats. Iranian J Reprod Med. 2008;6(2):71–76.

    Google Scholar 

  6. Abd-Allah AR, Aly HA, Moustafa AM, Abdel-Aziz AA, Hamada FM. Adverse testicular effects of some quinolone members in rats. Pharmacol Res. 2000;41(2):211–219.

    Article  CAS  PubMed  Google Scholar 

  7. Nishikawa T, Kohjimoto Y, Nishihata M, Ebisuno S, Hara I. Synergistic antitumor effects of fleroxacin with 5-fluorouracil in vitro and in vivo for bladder cancer cell lines. Urology. Vol 74. United States, USA:2009:1370–1376.

    Article  PubMed  Google Scholar 

  8. Kamat AM, DeHaven JI, Lamm DL. Quinolone antibiotics: a potential adjunct to intravesical chemotherapy for bladder cancer. Urology. Vol 54. United States, USA:1999:56–61.

    Article  CAS  PubMed  Google Scholar 

  9. Koziel R, Szczepanowska J, Magalska A, et al. Ciprofloxacin inhibits proliferation and promotes generation of aneuploidy in Jurkat cells. J Physiol Pharmacol. 2010;61(2):233–239.

    CAS  PubMed  Google Scholar 

  10. Multhaupt HA, Alvarez JC, Rafferty PA, Warhol MJ, Lackman RD. Fluoroquinolone’s effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation. J Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):56–61.

    Article  CAS  PubMed  Google Scholar 

  11. Aranha O, Grignon R, Fernandes N, et al. Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis. Int J Oncol. 2003;22(4):787–794.

    CAS  PubMed  Google Scholar 

  12. Herold C, Ocker M, Ganslmayer M, et al. Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br J Cancer. 2002;86(3):443–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mondal ER, Das SK, Mukherjee P. Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones with a human non-small cell lung cancer cell line in culture. Asian Pac J Cancer Prev. 2004;5(2):196–204.

    CAS  PubMed  Google Scholar 

  14. Herbold BA, Brendler-Schwaab SY, Ahr HJ. Ciprofloxacin: in vivo genotoxicity studies. Mutat Res. Vol 498. Netherlands: 2001:193–205.

    Article  CAS  PubMed  Google Scholar 

  15. Holtom PD, Pavkovic SA, Bravos PD, et al. Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res. 2000;18(5):721–727.

    Article  CAS  PubMed  Google Scholar 

  16. Lawrence JW, Claire DC, Weissig V, Rowe TC. Delayed cytotoxicity and cleavage of mitochondrial DNA in ciprofloxacin-treated mammalian cells. Mol Pharmacol. 1996;50(5):1178–1188.

    CAS  PubMed  Google Scholar 

  17. Aranha O, Zhu L, Alhasan S, et al. Role of mitochondria in ciprofloxacin induced apoptosis in bladder cancer cells. J Urol. 2002; 167(3):1288–1294.

    Article  CAS  PubMed  Google Scholar 

  18. Zobeiri F, Sadrkhanlou R-A, Salami S, Ahmadi A, Mardani K. The effect of ciprofloxacin on sperm DNA damage, fertility potential and early embryonic development in mice. Veterinary Research Forum. 2012;3(2):131–135.

    PubMed  PubMed Central  Google Scholar 

  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. May 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  21. Buchanan JF, Davis LJ. Drug-induced infertility. Drug Intell Clin Pharm. 1984;18(2):122–132.

    Article  CAS  PubMed  Google Scholar 

  22. Beeley L. Drug-induced sexual dysfunction and infertility. Adverse Drug React Acute Poisoning Rev. 1984;3(1):23–42.

    CAS  PubMed  Google Scholar 

  23. Peirouvi T, Salami S. GnRH agonist induces apoptosis in seminiferous tubules of immature rats: direct gonadal action. Andrologia. 2010;42(4):231–235.

    Article  CAS  PubMed  Google Scholar 

  24. Yan W, Suominen J, Samson M, Jegou B, Toppari J. Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Mol Cell Endocrinol. 2000;165(1–2):115–129.

    Article  CAS  PubMed  Google Scholar 

  25. Boulogne B, Olaso R, Levacher C, Durand P, Habert R. Apoptosis and mitosis in gonocytes of the rat testis during foetal and neonatal development. Int J Androl. 1999;22(6):356–365.

    Article  CAS  PubMed  Google Scholar 

  26. Dunkel L, Hirvonen V, Erkkila K. Clinical aspects of male germ cell apoptosis during testis development and spermatogenesis. Cell Death Differ. 1997;4(3):171–179.

    Article  CAS  PubMed  Google Scholar 

  27. Mori C, Nakamura N, Dix DJ, et al. Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Dev Dyn. 1997;208(1): 125–136.

    Article  CAS  PubMed  Google Scholar 

  28. Zini A, Agarwal A. Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction: Springer.

  29. Lozano GM, Bejarano I, Espino J, et al. Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev. 2009;55(6): 615–621.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor SL, Weng SL, Fox P, et al. Somatic cell apoptosis markers and pathways in human ejaculated sperm: potential utility as indicators of sperm quality. Mol Hum Reprod. 2004;10(11): 825–834.

    Article  CAS  PubMed  Google Scholar 

  31. Weng SL, Taylor SL, Morshedi M, et al. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod. 2002;8(11):984–991.

    Article  CAS  PubMed  Google Scholar 

  32. Bragg PW, Handel MA. Protein synthesis in mouse spermatozoa. Biol Reprod. 1979;20(2):333–337.

    Article  CAS  PubMed  Google Scholar 

  33. Gur Y, Breitbart H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 2006; 20(4):411–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gur Y, Breitbart H. Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol Cell Endocrinol. 2008; 282(1–2):45–55.

    Article  CAS  PubMed  Google Scholar 

  35. Herold C, Ganslmayer M, Ocker M, et al. Overadditive antiproliferative and pro-apoptotic effects of a combination therapy on colorectal carcinoma cells. Int J Oncol. 2003;23(3): 751–756.

    CAS  PubMed  Google Scholar 

  36. Kaminskyy V, Kulachkovskyy O, Stoika R. A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicol Lett. 2008;177(3):168–181.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Zhao XF, Ji YL, et al. Mitochondrial signaling pathway is also involved in bisphenol A induced germ cell apoptosis in testes. Toxicol Lett. 2010;199(2):129–135.

    Article  CAS  PubMed  Google Scholar 

  38. Kalia S, Bansal MP. Regulation of apoptosis by Caspases under oxidative stress conditions in mice testicular cells: in vitro molecular mechanism. Mol Cell Biochem. 2009;322(1–2):43–52.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JM, Ghosh SR, Weil AC, Zirkin BR. Caspase-3 and caspase-activated deoxyribonuclease are associated with testicular germ cell apoptosis resulting from reduced intratesticular testosterone. Endocrinology. 2001;142(9):3809–3816.

    Article  CAS  PubMed  Google Scholar 

  40. Raza A, Qawi H, Andric T, et al. Pentoxifylline, Ciprofloxacin and Dexamethasone improve the ineffective hematopoiesis in myelodysplastic syndrome patients; malignancy. Hematology. 2000;5(4):275–284.

    Article  CAS  PubMed  Google Scholar 

  41. Bergan T. Extravascular penetration of ciprofloxacin. A review. Diagn Microbiol Infect Dis. 1990;13(2):103–114.

    Article  CAS  PubMed  Google Scholar 

  42. Naber KG, Sorgel F, Kinzig M, Weigel DM. Penetration of ciprofloxacin into prostatic fluid, ejaculate and seminal fluid in volunteers after an oral dose of 750 mg. J Urol. 1993;150(5 Pt 2): 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  43. Klemmt L, Scialli AR. The transport of chemicals in semen. Birth Defects Res B Dev Reprod Toxicol. 2005;74(2):119–131.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Salami PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobeiri, F., Salami, S., Sadrkhanlou, R. et al. Role of Mitochondria in Ciprofloxacin-Induced Apoptosis in Murine Sperm Cells. Reprod. Sci. 20, 1090–1095 (2013). https://doi.org/10.1177/1933719113477482

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113477482

Keywords

Navigation