Skip to main content

Advertisement

Log in

Circulating Levels of Neutrophil Gelatinase–Associated Lipocalin (NGAL) Correlate With the Presence and Severity of Preeclampsia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Neutrophil gelatinase–associated lipocalin (NGAL) has emerged as a reliable marker of acute renal injury and is produced at the maternal–fetal interface but its role in preeclampsia has not been systematically examined. This study investigated whether plasma NGAL concentrations changed in patients with preeclampsia at diagnosis compared to normotensive controls.

Study Design

A case–control study was performed. Plasma was collected from women with preeclampsia and normotensive controls matched for age, gestational age, and body mass index. Plasma NGAL concentrations were measured by specific enzyme-linked immunosorbent assay.

Results

Patients with preeclampsia had significantly higher NGAL concentrations than controls (median [range]: 203.8 ng/mL [66.1-575.4] vs 122.8 ng/mL [7.0-669.7]; P = .047). In subgroup analysis, patients with severe preeclampsia had significantly higher NGAL concentrations than those with mild preeclampsia. Plasma NGAL concentrations were positively correlated with the amount of proteinuria in women with preeclampsia (P = .003).

Conclusions

Plasma NGAL concentrations were significantly elevated in women with preeclampsia versus normotensive controls, and concentrations appear to be associated with the severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists. Diagnosis and management of preeclampsia and eclampsia. ACOG Practice Bulletin No. 33. Obstet Gynecol. 2002;99(1):159–167.

    Google Scholar 

  2. Chaiworapongsa T, Romero R, Espinoza J, et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Am J Obstet Gynecol. 2004;190(6):1541–1550.

    Article  CAS  PubMed  Google Scholar 

  3. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7): 672–683.

    Article  CAS  PubMed  Google Scholar 

  4. Thadhani R, Mutter WP, Wolf M, et al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab. 2004;89(2):770–775.

    Article  CAS  PubMed  Google Scholar 

  5. Chaiworapongsa T, Romero R, Kim YM, et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med. 2005;17(1):3–18.

    Article  CAS  PubMed  Google Scholar 

  6. Levine RJ, Thadhani R, Qian C, et al. Urinary placental growth factor and risk of preeclampsia. JAMA. 2005;293(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  7. Buhimschi CS, Norwitz ER, Funai E, et al. Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia. Am J Obstet Gynecol. 2005;192(3): 734–741.

    Article  CAS  PubMed  Google Scholar 

  8. Aggarwal PK, Jain V, Sakhuja V, Karumanchi SA, Jha V. Low urinary placental growth factor is a marker of pre-eclampsia. Kidney Int. 2006;69(3):621–624.

    Article  CAS  PubMed  Google Scholar 

  9. Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic gactors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.

    Article  CAS  PubMed  Google Scholar 

  10. Erez O, Romero R, Espinoza J, et al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med. 2008;21(5):279–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kusanovic JP, Romero R, Chaiworapongsa T, et al. A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med. 2009;22(11): 1021–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buhimschi CS, Baumbusch MA, Dulay AT, et al. The role of urinary soluble endoglin in the diagnosis of pre-eclampsia: comparison with soluble fms-like tyrosine kinase 1 to placental growth factor ratio. BJOG. 2010;117(3):321–330.

    Article  CAS  PubMed  Google Scholar 

  13. Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH. Prediction of early, intermediated and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diagn. 2011;31(1):66–74.

    Article  PubMed  Google Scholar 

  14. Flower DR. The lipocalin family: a role in cell regulation. FEBS Lett. 1994;354(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt-Ott KM, Mori K, Kalandadze A, et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens. 2006;15(4):442–449.

    Article  CAS  PubMed  Google Scholar 

  16. Bolignano D, Donato V, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis. 2008;52(3):595–605.

    Article  CAS  PubMed  Google Scholar 

  17. Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10(5):1045–1056.

    Article  CAS  PubMed  Google Scholar 

  18. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917–921.

    Article  CAS  PubMed  Google Scholar 

  19. Kjeldsen L, Johnsen AH, Sengelv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425–10432.

    CAS  PubMed  Google Scholar 

  20. Kjeldsen L, Bainton DF, Sengelv H, Borregaard N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood. 1994; 83(3):799–807.

    Article  CAS  PubMed  Google Scholar 

  21. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  22. Xu S, Venge P. Lipocalins as biochemical markers of disease. Biochem Biophys Acta. 2000;1482(1–2):298–307.

    CAS  PubMed  Google Scholar 

  23. Tsai HT, Su PH, Lee TH, et al. Significant elevation and correlation of plasma neutrophil gelatinase associated lipocalin and its complex with matrix metalloproteinase-9 in patients with pelvic inflammatory disease. Clin Chim Acta. 2011;412(13–14):1252–1256.

    Article  CAS  PubMed  Google Scholar 

  24. Eagan TM, Damas JK, Ueland T, et al. Neutrophil gelatinase-associated lipocalin: a biomarker in COPD. Chest. 2010;138(4): 888–895.

    Article  PubMed  Google Scholar 

  25. Elneihoum AM, Falke P, Hedblad B, Lindgarde F, Ohlsson K. Leukocyte activation in atherosclerosis: correlation with risk factors. Atherosclerosis. 1997;131(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996;38(3):414–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stoesz SP, Friedl A, Haag JD, Lindstrom MJ, Clark GM, Gould MN. Heterogeneous expression of the lipocalin NGAL in primary breast cancers. Int J Cancer. 1998;79(6):565–572.

    Article  CAS  PubMed  Google Scholar 

  28. Furutani M, Arii S, Mizumoto M, Kato M, Imamura M. Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett. 1998;122(1–2):209–214.

    Article  CAS  PubMed  Google Scholar 

  29. Kubben FJGM, Sier CFM, Hawinkels LJAC, et al. Clinical evidence for a protective role of lipocalin-2 against MMP-9 auto-degradation and the impact for gastric cancer. Euro J Cancer. 2007;43(12):1869–1876.

    Article  CAS  Google Scholar 

  30. Lim R, Ahmed N, Borregaard N, et al. Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. Int J Cancer. 2007;120(11):2426–2434.

    Article  CAS  PubMed  Google Scholar 

  31. Provatopoulou X, Gounaris A, Kalogera E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 2009;9:390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bartsch S, Tschesche H. Cloning and expression of human neutrophil lipocalin cDNA derived from bone marrow and ovarian cancer cells. FEBS Lett. 1995;357(3):255–259.

    Article  CAS  PubMed  Google Scholar 

  33. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10): 2534–2543.

    Article  CAS  PubMed  Google Scholar 

  34. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–1238.

    Article  CAS  PubMed  Google Scholar 

  35. Devarajan P. Emerging biomarkers of acute kidney injury. Contrib Nephrol. 2007;156:203–212.

    Article  PubMed  Google Scholar 

  36. Parikh CR, Devarajan P. New biomarkers of acute kidney injury. Crit Care Med. 2008;36(suppl 4):S159–S165.

    Article  CAS  PubMed  Google Scholar 

  37. Nickolas TL, O’Rourke MJ, Yang J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148(11):810–819.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A; NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and metaanalysis. Am J Kidney Dis. 2009;54(6):1012–1024.

    Article  CAS  PubMed  Google Scholar 

  39. Haase-Fielitz A, Bellomo R, Devarajan P, et al. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery–a prospective cohort study. Critical Care Med. 2009;37(2):553–560.

    Article  CAS  Google Scholar 

  40. Makris K, Markou N, Evodia E, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  41. Tadesse S, Luo G, Park JS, et al. Intraamniotic infection upregulates neutrophil gelatinase-associated lipocalin (NGAL) expression at the maternal-fetal interface at term: Implications for infection-related preterm birth. Reprod Sci. 2011;18(8):713–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D’Anna R, Baviera G, Giordano D, Todarello G, Corrado F, Buemi M. Second trimester neutrophil gelatinase-associated lipocalin as a potential prediagnostic marker of preeclampsia. Acta Obstet Gynecol Scand. 2008;87(12):1370–1373.

    Article  PubMed  CAS  Google Scholar 

  43. D’Anna R, Baviera G, Giordano D, et al. First trimester serum PAPP-A and NGAL in the prediction of late-onset pre-eclampsia. Prenat Diagn. 2009;29(11):1066–1068.

    Article  PubMed  Google Scholar 

  44. Gerretsen G, Huisjes HJ, Elema JD. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol. 1981;88(9): 876–881.

    Article  CAS  PubMed  Google Scholar 

  45. Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med. 2006; 11(5): 309–316.

    Article  CAS  PubMed  Google Scholar 

  46. Roberts JM, Taylor RN, Goldfien A. Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia. Am J Hypertension. 1991;4(8):700–708.

    Article  CAS  Google Scholar 

  47. Schiff E, Ben-Baruch G, Peleg E, et al. Immunoreactive circulating endothelin-1 in normal and hypertensive pregnancies. Am J Obstet Gynecol. 1992;166(2):624–628.

    Article  CAS  PubMed  Google Scholar 

  48. Higgins JR, Papayianni A, Brady HR, Darling MR, Walshe JJ. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia. Am J Obstet Gynecol. 1998; 179(2):464–469.

    Article  CAS  PubMed  Google Scholar 

  49. Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006;195(1):40–49.

    Article  PubMed  Google Scholar 

  50. Pedersen KR, Ravn HB, Hjortdal VE, Norregaard R, Povlsen JV. Neutrophil gelatinase-associated lipocalin (NGAL): validation of commercially available ELISA. Scand J Clin Lab Invest. 2010; 70(5):374–382.

    Article  CAS  PubMed  Google Scholar 

  51. Youssef A, Righetti F, Morano D, Rizzo N, Farina A. Uterine artery Doppler and biochemical markers (PAPP-A, PIGF, sFlt-1, P-selectin, NGAL) at 11+0 to 13+6 weeks in the prediction of late (> 34 weeks) pre-eclampsia. Prenat Diagn. 2011;31(12): 1141–1146.

    CAS  PubMed  Google Scholar 

  52. D’Anna R, Baviera G, Giordano D, et al. Neutrophil gelatinase-associated lipocalin serum evaluation through normal pregnancy and in pregnancies complicated by preeclampsia. Acta Obstet Gynecol Scand. 2010;89(2):275–278.

    Article  PubMed  Google Scholar 

  53. Brosens I. A study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. J Obstet Gynaecol Br Commonw. 1964;71:222–230.

    Article  CAS  PubMed  Google Scholar 

  54. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–191.

    CAS  PubMed  Google Scholar 

  55. Robertson WB, Brosens I, Dixon G. Maternal uterine vascular lesions in the hypertensive complications of pregnancy. Perspect Nephrol Hypertens. 1976;5:115–127.

    CAS  PubMed  Google Scholar 

  56. Brosens IA. Morphological changes in the utero-placental bed in pregnancy hypertension. Clin Obstet Gynaecol. 1977;4(3): 573–593.

    CAS  PubMed  Google Scholar 

  57. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Shin Park MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.M., Park, J.S., Norwitz, E.R. et al. Circulating Levels of Neutrophil Gelatinase–Associated Lipocalin (NGAL) Correlate With the Presence and Severity of Preeclampsia. Reprod. Sci. 20, 1083–1089 (2013). https://doi.org/10.1177/1933719113477480

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113477480

Keywords

Navigation