Skip to main content

Advertisement

Log in

Alterations of MicroRNA Expression Patterns in Human Cervical Carcinoma Cells (Ca Ski) toward 1′S-1′-Acetoxychavicol Acetate and Cisplatin

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aims of this study were to investigate the combined effects of a natural compound 1′S-1′-acetoxychavicol acetate (ACA) with cisplatin (CDDP) on HPV-positive human cervical carcinoma cell lines (Ca Ski—low cisplatin sensitivity and HeLa—high cisplatin sensitivity), and to identify microRNAs (miRNAs) modulated in response toward ACA and/or CDDP. It was revealed that both ACA and CDDP induced dose- and time-dependent cytotoxicity when used as a stand-alone agent, while synergistic effects were observed when used in combination with a combination index (CI) value of 0.74 ± 0.01 and 0.85 ± 0.01 in Ca Ski and HeLa cells, respectively. A total of 25 miRNAs were found to be significantly differentially expressed in response to ACA and/or CDDP. These include hsa-miR-138, hsa-miR-210, and hsa-miR-744 with predicted gene targets involved in signaling pathways regulating apoptosis and cell cycle progression. In conclusion, ACA acts as a chemosensitizer which synergistically potentiates the cytotoxic effect of CDDP in cervical cancer cells. The altered miRNA expression upon administration of ACA and/or CDDP suggests that miRNAs play an important role in anticancer drug responses, which can be manipulated for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO/ICO Information Centre on Human Papilloma Virus (HPV) and Cervical Cancer. http://www.who.int/hpvcentre/en/. Accessed October 10, 2011.

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–156.

    Article  CAS  PubMed  Google Scholar 

  3. Zainal AO, Zainuddin MA, Nor Saleha IT. Malaysia Cancer Statistics - Data and Figure, Peninsular Malaysia. National Cancer Registry: Ministry of Health Malaysia; 2006.

    Google Scholar 

  4. Mahendele S, Aung H, Wang A, et al American ginseng berry extract and ginsenoside reattenuate cisplatin-induced kaolin intake in rats. Cancer Chemother Pharmacol. 2005;56(1):63–69.

    Article  CAS  Google Scholar 

  5. Wang CZ, Fishbein A, Aung HH, et al Polyphenol contents in grape-seed extracts correlate with antipica effects in cisplatintreated rats. J Altern Complement Med. 2005;11(6):1059–1065.

    Article  PubMed  Google Scholar 

  6. Kondo A, Ohigashi H, Murakami A, Suratwadee J, Koshimizu K. 1′-acetoxychavicol acetate as a potent inhibitor of tumor promoter-induced Epstein-Bar virus activation from Languas galanga, a traditional Thai condiment. Biosci Biotechnol Biochem. 1993;57:1344–1345.

    Article  CAS  Google Scholar 

  7. Moffatt J, Hashimoto M, Kojima A, et al Apoptosis induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated with modulation of polyamine metabolism and caspase-3 activation. Carcinogenesis. 2000;21(12):2151–2157.

    Article  CAS  PubMed  Google Scholar 

  8. Ito K, Nakazato T, Murakami A, et al Induction of apoptosis in human myeloid leukemic cells by 1′-acetoxychavicol acetate through mitochondrial- and Fas-mediated dual mechanism. Clin Cancer Res. 2004;10(6):2120–2130.

    Article  CAS  PubMed  Google Scholar 

  9. Khalijah A, Azmi MN, In LLA, Ahmad NA, Halijah I, Hasima NN. The apoptotic effects of 1′S-1′-acetoxychavicol acetate from Alpinia conchigera on human cancer cells. Molecules. 2010;15(11):8048–8059.

    Article  CAS  Google Scholar 

  10. Page R, Takimoto C. Cancer management: a multidisciplinary approach: medical, surgical, and radiation oncology. In: Principles of Chemotherapy. 8th ed. New York, NY: PRP; 2004:21–38.

    Google Scholar 

  11. Wong E, Giandomenico CM. Current status of platinum-based antitumor drugs. Chem Rev. 1999;99(9):2451–2466.

    Article  CAS  PubMed  Google Scholar 

  12. Zoli W, Ricotti L, Tesei A, Barzanti F, Amadori D. In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol. 2001;37(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

    Article  CAS  PubMed  Google Scholar 

  14. Lim LP, Lau NC, Garrett-Engele P, et al Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):767–773.

    Article  CAS  Google Scholar 

  15. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3(3):e85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific mircoRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882–891.

    CAS  PubMed  Google Scholar 

  17. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the pro-apoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  18. Baehrecke EH. MiRNAs: micro managers of programmed cell death. Curr Biol. 2003;13(12):R473–R475.

    Article  CAS  PubMed  Google Scholar 

  19. Saxena A, Yashar C, Taylor DD, Gercel-Taylor C. Cellular response to chemotherapy and radiation in cervical cancer. Am J Obstet Gynecol. 2005;192(5):1399–1403.

    Article  CAS  PubMed  Google Scholar 

  20. Funaoka K, Shindoh M, Yamashita T, Fujinaga K, Amemiya A, Totsuka Y. High-risk HPV-positive human cancer cell lines show different sensitivity to cisplatin-induced apoptosis correlated with the p21Waf1/Cip1 level. Cancer Lett. 1996;108(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao L, Wientjes GM, Au JLS. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res. 2004;10(23):7994–8004.

    Article  CAS  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis BP, Burge CB, Bartel BP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  24. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    Article  CAS  Google Scholar 

  25. Cadron I, Van Gorp T, Amant F, Leunen K, Neven P, Vergote I. Chemotherapy for recurrent cervical cancer. Gynecol Oncol. 2007;107(1 suppl 1):S113–S118.

    Article  CAS  PubMed  Google Scholar 

  26. Tao X, Hu W, Ramirez PT, Kavanagh JJ. Chemotherapy for recurrent and metastatic cervical cancer. Gynecol Oncol. 2008;110(3 suppl 2):S67–S71.

    Article  CAS  PubMed  Google Scholar 

  27. Higashida M, Xu S, Kojima-Yuasa A, et al. 1′-Acetoxychavicol acetate-induced cytotoxicity is accompanied by a rapid and drastic modulation of glutathione metabolism. Amino Acids. 2009;36(1):107–113.

    Article  CAS  PubMed  Google Scholar 

  28. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–7269.

    Article  CAS  PubMed  Google Scholar 

  29. Ichikawa H, Takada Y, Murakami A, Aggarwal BB. Identification of a novel blocker of IκBα kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-κB-regulated gene products. J. Immunol. 2005;174(11):7383–7392.

    Article  CAS  PubMed  Google Scholar 

  30. Hatakeyama H, Cheng H, Wirth P, et al Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One. 2010;5(9):e12702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cittelly DM, Das PM, Spoelstra NS, et al Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer. 2010;9:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang C, Cai J, Wang Q, et al Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol. 2012;124(2):325–334.

    Article  CAS  PubMed  Google Scholar 

  33. Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y. Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer. 2010;46(9):1692–1702.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Q, Zhong M, Liu W, Li J, Huang J, Zheng L. Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). Exp Lung Res. 2011;37(7):427–434.

    Article  CAS  PubMed  Google Scholar 

  35. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9(2):180–186.

    Article  CAS  PubMed  Google Scholar 

  36. Branca M, Ciotti M, Santini D, et al Activation of the ERK/MAP kinase pathway in cervical intraepithelial neoplasia is related to grade of the lesion but not to high-risk human papillomavirus, virus clearance, or prognosis in cervical cancer. Am J Clin Pathol. 2004;122(6):902–911.

    Article  CAS  PubMed  Google Scholar 

  37. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326–1331.

    Article  CAS  PubMed  Google Scholar 

  38. Persons DL, Yazlovitskaya EM, Cui W, Pelling JC. Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res. 1999;5(5):1007–1014.

    CAS  PubMed  Google Scholar 

  39. Hayakawa J, Ohmichi M, Kurachi H, et al Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J Biol Chem. 1999;274(44):31648–31654.

    Article  CAS  PubMed  Google Scholar 

  40. de Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst. 2000;92(17):1388–1402.

    Article  PubMed  Google Scholar 

  41. Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J. 2000;19(19):5178–5193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynisdóttir I, Polyak K, Iavarone A, Massagué J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995;9(15):1831–1845.

    Article  PubMed  Google Scholar 

  43. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–426.

    Article  CAS  PubMed  Google Scholar 

  44. He TC, Sparks AB, Rago C, et al Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–1512.

    Article  CAS  PubMed  Google Scholar 

  45. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80(2):285–291.

    Article  CAS  PubMed  Google Scholar 

  46. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell. 1996;87(4):619–628.

    Article  CAS  PubMed  Google Scholar 

  47. Henkels KM, Turchi JJ. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res. 1999;59(13):3077–3083.

    CAS  PubMed  Google Scholar 

  48. Venkatraman M, Anto RJ, Nair A, Varghese M, Karunagaran D. Biological and chemical inhibitors of NF-kappaB sensitize SiHa cells to cisplatin-induced apoptosis. Mol Carcinog. 2005;44(1):51–59.

    Article  CAS  PubMed  Google Scholar 

  49. Song X, Liu X, Chi W, et al Hypoxia-induced resistance to cisplatin and doxorubixin in non-small cell lung cancer is inhibited by silencing of HIF-1α gene. Cancer Chemother Pharmacol. 2006;58(6):776–784.

    Article  CAS  PubMed  Google Scholar 

  50. Fricke E, Hermannstädter C, Keller G, et al Effect of wild-type and mutant E-cadherin on cell proliferation and responsiveness to the chemotherapeutic agents cisplatin, etoposide, and 5-fluorouracil. Oncology. 2004;66(2):150–159.

    Article  CAS  PubMed  Google Scholar 

  51. Chen JT, Huang CY, Chiang YY, et al HGF increases cisplatin resistance via down-regulation of AIF in lung cancer cells. Am J Respir Cell Mol Biol. 2008;38(5):559–565.

    Article  CAS  PubMed  Google Scholar 

  52. Pan B, Yao KS, Monia BP, et al Reversal of cisplatin resistance in human ovarian cancer cell lines by a c-jun antisense oligodeoxynucleotide (ISIS 10582): evidence for the role of transcription factor overexpression in determining resistant phenotype. Biochem Pharmacol. 2002;63(9):1699–1707.

    Article  CAS  PubMed  Google Scholar 

  53. Lee S, Choi EJ, Jin C, Kim DH. Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 2005;97(1):26–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Hasima Nagoor PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phuah, N.H., In, L.L., Azmi, M.N. et al. Alterations of MicroRNA Expression Patterns in Human Cervical Carcinoma Cells (Ca Ski) toward 1′S-1′-Acetoxychavicol Acetate and Cisplatin. Reprod. Sci. 20, 567–578 (2013). https://doi.org/10.1177/1933719112459220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112459220

Keywords

Navigation