Skip to main content
Log in

Association of miR-146aC>G, miR-196a2T>C, and miR-499A>G Polymorphisms With Risk of Premature Ovarian Failure in Korean Women

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We investigated whether microRNA (miRNA) polymorphisms (miR-146aC>G, miR-196a2T>C, and miR-499A>G) confer risk of premature ovarian failure (POF) in Korean women. DNA samples from 136 patients with POF and 234 controls were genotyped for the 3 miRNA single-nucleotide polymorphisms by polymerase chain reaction-restriction fragment length polymorphism. The miR-146aCG/miR-196a2TC combined genotype was less frequent in patients than in controls (P < .05), conferring less susceptibility. Using haplotype-based multifactor dimensionality reduction analysis, the C-C-A and G-T-A inferred haplotypes (miR-146a/miR-196a2/miR-499) were less frequent in patients, suggesting protective effects (P < .05 for each), whereas the C-T-A and G-C-A haplotypes were more frequent in patients (P < .05 for each). The C-T and G-C haplotypes (miR-146a/miR-196a2) were more frequent in patients, whereas the C-C and G-T haplotypes were less frequent in patients (P < .05 for each). However, none of the 3 miRNA polymorphisms alone was associated with POF risk. Our findings suggest that putative gene-gene interaction between miR-146 and miR-196a2 may be involved in POF development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis BP, Burge CB, Battel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V. The functions of animal microRNAs. Nature. 2004; 431(7006):350–355.

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5(5):396–400.

    Article  CAS  PubMed  Google Scholar 

  4. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–98.

    Article  CAS  PubMed  Google Scholar 

  5. Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309(5740):1519–1524.

    Article  CAS  PubMed  Google Scholar 

  6. O’Toole AS, Miller S, Haines N, Zink MC, Serra MJ. Comprehensive thermodynamic analysis of 3’ double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res. 2006;34(11):3338–3344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Toloubeydokhti T, Bukulmez O, Chegini N. Potential regulatory functions of microRNAs in the ovary. Semin Reprod Med. 2008; 26(6):469–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeon YJ, Choi YS, Rah H, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene. 2012;494(2):168–173.

    Article  CAS  PubMed  Google Scholar 

  9. Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.

    CAS  PubMed  Google Scholar 

  10. Assou S, Anahory T, Pantesco V, et al. The human cumulus— oocyte complex gene-expression profile. Hum Reprod. 2006; 21(7):1705–1719.

    Article  CAS  PubMed  Google Scholar 

  11. Murchison EP, Stein P, Xuan Z, et al. Critical roles for Dicer in the female germline. Genes Dev. 2007;21(6):682–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang F, Kaneda M, O’Carroll D, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21(6): 644–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicerl is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008; 149(12):6207–6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagaraja AK, Andreu-Vieyra C, Franco HL, et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008;22(10):2336–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol. 2010;315(1–2):63–73.

    Article  CAS  PubMed  Google Scholar 

  16. Medeiros LA, Dennis LM, Gill ME, et al. Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A. 2011;108(34): 14163–14168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Legro RS, Barnhart HX, Schlaff WD, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356(6):551–566.

    Article  CAS  PubMed  Google Scholar 

  18. Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26(1):53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wood JR, Dumesic DA, Abbott DH, Strauss JF 3rd. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92(2):705–713.

    Article  CAS  PubMed  Google Scholar 

  20. Hughes C, Elgasim M, Layfield R, Atiomo W. Genomic and post-genomic approaches to polycystic ovary syndrome—progress so far: mini review. Hum Reprod. 2006;21(11):2766–2775.

    Article  CAS  PubMed  Google Scholar 

  21. He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol. 2007;21(11):2785–2794.

    Article  CAS  PubMed  Google Scholar 

  22. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–606.

    CAS  PubMed  Google Scholar 

  23. Rebar RW, Connolly HV. Clinical features of young women with hypergonadotropic amenorrhea. Fertil Steril. 1990;53(5):804–810.

    Article  CAS  PubMed  Google Scholar 

  24. Conway GS. Premature ovarian failure. Br Med Bull. 2000;56(3): 643–649.

    Article  CAS  PubMed  Google Scholar 

  25. Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goswami D, Conway GS. Premature ovarian failure. Hum Reprod Update. 2005;11(4):391–410.

    Article  CAS  PubMed  Google Scholar 

  27. Abd El Naby WS, Hagos TH, Hossain MM, et al. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote. 2011:1–21.

  28. Suzuki Y, Kim HW, Ashraf M, Haider H. Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol. 2010;299(4):H1077–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jose de los Santos M, Anderson DJ, Racowsky C, Hill JA. Presence of Fas-Fas ligand system and bcl-2 gene products in cells and fluids from gonadotropin-stimulated human ovaries. Biol Reprod. 2000;63(6):1811–1816.

    Article  CAS  PubMed  Google Scholar 

  30. Reynaud K, Driancourt MA. Oocyte attrition. Mol Cell Endocrinol. 2000;163(1–2):101–108.

    Article  CAS  PubMed  Google Scholar 

  31. Tripurani SK, Lee KB, Wee G, Smith GW, Yao J. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev Biol. 2011;11:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reddy A, Zheng Y, Jagadeeswaran G, et al. Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics. 2009;10:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu Z, Liang J, Wang Z, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009;30(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  36. Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol. 2010;28(2):240–244.

    Article  CAS  PubMed  Google Scholar 

  37. Choi DH, Kim EK, Kim KH, et al. Expression pattern of endothe-lin system components and localization of smooth muscle cells in the human pre-ovulatory follicle. Hum Reprod. 2011;26(5): 1171–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008; 118(7):2600–2608.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gauderman WJ. Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol. 2002;155(5):478–484.

    Article  PubMed  Google Scholar 

  40. Gauderman WJ. Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med. 2002;21(1):35–50.

    Article  PubMed  Google Scholar 

  41. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003;19(3):376–382.

    Article  CAS  PubMed  Google Scholar 

  42. Moore JH, Williams SM. New strategies for identifying gene-gene interactions in hypertension. Ann Med. 2002;34(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  43. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69(1):138–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57(1):289–300.

    Google Scholar 

  45. Curry E, Safranski TJ, Pratt SL. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology. 2011;76(8):1532–1539.

    Article  CAS  PubMed  Google Scholar 

  46. He Z, Kokkinaki M, Pant D, Gallicano GI, Dym M. Small RNA molecules in the regulation of spermatogenesis. Reproduction. 2009;137(6):901–911.

    Article  CAS  PubMed  Google Scholar 

  47. Papaioannou MD, Nef S. microRNAs in the testis: building up male fertility. J Androl. 2010;31(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  48. Wang C, Yang C, Chen X, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–1731.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H, Liu Y, Su D, et al. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil Steril. 2011;96(1):34–39 e37.

    Article  CAS  PubMed  Google Scholar 

  50. Hoffman AE, Zheng T, Yi C, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69(14):5970–5977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Min KT, Kim JW, Jeon YJ, et al. Association of the miR-146aC>G, 1490T, 196a2C>T, and 499A>G polymorphisms with colorectal cancer in the Korean population. Mol Carcinog. 2011; DOI: 10.1002/mc.21849.

    Article  PubMed  CAS  Google Scholar 

  52. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1183–1187.

    Article  CAS  PubMed  Google Scholar 

  54. Xu J, Hu Z, Xu Z, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat. 2009;30(8):1231–1236.

    Article  CAS  PubMed  Google Scholar 

  55. Kaput J, Dawson K. Complexity of type 2 diabetes mellitus data sets emerging from nutrigenomic research: a case for dimensionality reduction? Mutat Res. 2007;622(1–2): 19–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakahara K, Carthew RW. Expanding roles for miRNAs and siRNAs in cell regulation. Curr Opin Cell Biol. 2004; 16(2): 127–133.

    Article  CAS  PubMed  Google Scholar 

  57. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol. 2008;33(3):312–315.

    Article  CAS  PubMed  Google Scholar 

  58. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–12486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bridgham JT, Johnson AL. Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol Reprod. 2001;65(3):733–739.

    Article  CAS  PubMed  Google Scholar 

  60. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005;11(2):162–177.

    Article  PubMed  CAS  Google Scholar 

  61. Hussein MR, Haemel AK, Wood GS. p53-related pathways and the molecular pathogenesis of melanoma. Eur J Cancer Prev. 2003;12(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  62. Suzumori N, Yan C, Matzuk MM, Rajkovic A. Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev. 2002;111(1–2):137–141.

    Article  CAS  PubMed  Google Scholar 

  63. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305(5687):1157–1159.

    Article  CAS  PubMed  Google Scholar 

  64. Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardi-omyocyte progenitor cells. Arterioscler Thromb Vase Biol. 2010; 30(4):859–868.

    Article  CAS  Google Scholar 

  65. Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 2001;29(16):3347–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jakobovits A, Shackleford GM, Varmus HE, Martin GR. Two proto-oncogenes implicated in mammary carcinogenesis, int-1 and int-2, are independently regulated during mouse development. Proc Natl Acad Sci U S A. 1986;83(20):7806–7810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Srivatsan ES, Misra BC, Venugopalan M, Wilczynski SP. Loss of heterozygosity for alleles on chromosome II in cervical carcinoma. Am J Hum Genet. 1991;49(4):868–877.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Naidu R, Wahab NA, Yadav M, Kutty MK, Nair S. Detection of amplified int-2/FGF-3 gene in primary breast carcinomas using differential polymerase chain reaction. Int J Mol Med. 2001; 8(2):193–198.

    CAS  PubMed  Google Scholar 

  69. Shalgi R, Lieber D, Oren M, Pilpel Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol. 2007;3(7):e131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sober S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun. 2010; 391(1):727–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu T, Zhu Y, Wei QK, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008;29(11):2126–2131.

    Article  CAS  PubMed  Google Scholar 

  72. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20): 7269–7274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vitiello D, Kodaman PH, Taylor HS. HOX genes in implantation. Semin Reprod Med. 2007;25(6):431–436.

    Article  CAS  PubMed  Google Scholar 

  74. Schimanski CC, Frerichs K, Rahman F, et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol. 2009;15(17):2089–2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Makker A, Goel MM, Das V, Anjoo A. PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. Gynecol Endocrinol. 2012;28(3):175–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Keun Kim PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rah, H., Jeon, Y.J., Shim, S.H. et al. Association of miR-146aC>G, miR-196a2T>C, and miR-499A>G Polymorphisms With Risk of Premature Ovarian Failure in Korean Women. Reprod. Sci. 20, 60–68 (2013). https://doi.org/10.1177/1933719112450341

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112450341

Keywords

Navigation