Skip to main content
Log in

Epab and Pabpc1 Are Differentially Expressed During Male Germ Cell Development

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Modification of poly(A) tail length constitutes the main posttranscriptional mechanism by which gene expression is regulated during spermatogenesis. Embryonic poly(A)-binding protein (EPAB) and somatic cytoplasmic poly(A)-binding protein (PABPC1) are the 2 key proteins implicated in this pathway. In this study we characterized the temporal and spatial expression of Epab and Pabpc1 in immature (D6-D32) and mature (D88) mouse testis and in isolated spermatogenic cells. Both Epab and Pabpc1 expression increased during early postnatal life and reached their peak at D32 testis. This was due to an increase in both spermatogonia (SG) and spermatocytes. In the mature testis, the highest levels of Epab were detected in SG, followed by round spermatids (RSs), while the most prominent Pabpc1 expression was detected in spermatocytes and RSs. Our findings suggest that PABPC1 may play a role in translational regulation of gene expression by cytoplasmic polyadenylation, which occurs in spermatocytes, while both EPAB and PABPC1 may help stabilize stored polyadenylated messenger RNAs in RSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayernia K, Adham I, Kremling H, et al. Stage and developmental specific gene expression during mammalian spermatogenesis. Int J Dev Biol. 1996;40(1):379–383.

    CAS  PubMed  Google Scholar 

  2. Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1:107.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kerr JB, Loveland KL, O’Bryan MK, et al. Cytology of the testis and intrinsic control mechanisms. In: JD Neill et al., eds. Knobil and Neill’s Physiology of Reproduction. Vol. 1, 3rd ed. New York, NY: Academic Press; 2006:827–947.

    Chapter  Google Scholar 

  4. Yan W. Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol. 2009;306(1–2): 24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeJong J. Basic mechanisms for the control of germ cell gene expression. Gene. 2006;366(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  6. Eddy EM. Regulation of gene expression during spermatogenesis. Semin Cell Dev Biol. 1998;9(4):451–457.

    Article  CAS  PubMed  Google Scholar 

  7. Hecht NB. Molecular mechanisms of male germ cell differentiation. Bioessays. 1998;20(7):555–561.

    Article  CAS  PubMed  Google Scholar 

  8. Steger K. Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl). 1999; 199(6):471–487.

    Article  CAS  Google Scholar 

  9. Kierszenbaum AL, Tres LL. RNA transcription and chromatin structure during meiotic and postmeiotic stages of spermatogenesis. Fed Proc. 1978;37(11):2512–2516.

    CAS  PubMed  Google Scholar 

  10. Kashiwabara S, Noguchi J, Zhuang T, et al. Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science. 2002;298(5600):1999–2002.

    Article  CAS  PubMed  Google Scholar 

  11. Elliott D. Pathways of post-transcriptional gene regulation in mammalian germ cell development. Cytogenet Genome Res. 2003;103(3–4):210–216.

    Article  CAS  PubMed  Google Scholar 

  12. Kleene KC. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development. 1989;106(2):367–373.

    CAS  PubMed  Google Scholar 

  13. Kleene KC, Distel RJ, Hecht NB. Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol. 1984;105(1):71–79.

    Article  CAS  PubMed  Google Scholar 

  14. Tay J, Richter JD. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell. 2001;1(2):201–213.

    Article  CAS  PubMed  Google Scholar 

  15. Stambuk RA, Moon RT. Purification and characterization of recombinant Xenopus poly(A)(+)-binding protein expressed in a baculovirus system. Biochem J. 1992;287(Pt 3):761–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voeltz GK, Ongkasuwan J, Standart N, et al. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 2001;15(6):774–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seli E, Lalioti MD, Flaherty SM, et al. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci U S A. 2005; 102(2):367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang H, Duckett CS, Lindsten T. iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol Cell Biol. 1995;15(12):6770–6776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feral C, Guellaen G, Pawlak A. Human testis expresses a specific poly(A)-binding protein. Nucleic Acids Res. 2001; 29(9):1872–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kleene KC, Wang MY, Cutler M, et al. Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse. Mol Reprod Dev. 1994;39(4):355–364.

    Article  CAS  PubMed  Google Scholar 

  21. Wahle E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell. 1991;66(4):759–768.

    Article  CAS  PubMed  Google Scholar 

  22. Good PJ, Abler L, Herring D, Sheets MD. Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis. 2004;38(4):166–175.

    Article  CAS  PubMed  Google Scholar 

  23. Wahle E, Lustig A, Jeno P, Maurer P. Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides. J Biol Chem. 1993;268(4):2937–2945.

    CAS  PubMed  Google Scholar 

  24. Bienroth S, Keller W, Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J. 1993;12(2):585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cosson B, Couturier A, Le Guellec R, et al. Characterization of the poly(A) binding proteins expressed during oogenesis and early development of Xenopus laevis. Biol Cell. 2002;94(4–5):217–231.

    Article  CAS  PubMed  Google Scholar 

  26. Gray NK, Coller JM, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 2000;19(17):4723–4733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guzeloglu-Kayisli O, Pauli S, Demir H, Lalioti MD, Sakkas D, Seli E. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod. 2008;14(10):581–588.

    Article  CAS  PubMed  Google Scholar 

  28. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1982;1(6):681–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–461.

    Article  CAS  PubMed  Google Scholar 

  30. Kim JH, Richter JD. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 2007;21(20):2571–2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Padmanabhan K, Richter JD. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 2006;20(2):199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao Q, Richter JD. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 2002;21(14):3852–3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meistrich ML, Bruce WR, Clermont Y. Cellular composition of fractions of mouse testis cells following velocity sedimentation separation. Exp Cell Res. 1973;79(1):213–227.

    Article  PubMed  Google Scholar 

  34. Vasco C, Zuccotti M, Redi CA, Garagna S. Identification, isolation, and RT-PCR analysis of single stage-specific spermatogenetic cells obtained from portions of seminiferous tubules classified by transillumination microscopy. Mol Reprod Dev. 2009;76(12):1173–1177.

    Article  CAS  PubMed  Google Scholar 

  35. Kotaja N, Kimmins S, Brancorsini S, et al. Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods. 2004;1(3): 249–254.

    Article  CAS  PubMed  Google Scholar 

  36. Bellve AR. Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol. 1993;225:84–113.

    Article  CAS  PubMed  Google Scholar 

  37. Romrell LJ, Bellve AR, Fawcett DW. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976;49(1):119–131.

    Article  CAS  PubMed  Google Scholar 

  38. Ganaiem M, AbuElhija M, Lunenfeld E, et al. Effect of interleukin-1 receptor antagonist gene deletion on male mouse fertility. Endocrinology. 2009;150(1):295–303.

    Article  CAS  PubMed  Google Scholar 

  39. Kimura M, Ishida K, Kashiwabara S, Baba T. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol Reprod. 2009; 80(3):545–554.

    Article  CAS  PubMed  Google Scholar 

  40. Forand A, Messiaen S, Habert R, Bernardino-Sgherri J. Exposure of the mouse perinatal testis to radiation leads to hypospermia at sexual maturity. Reproduction. 2009;137(3):487–495.

    Article  CAS  PubMed  Google Scholar 

  41. Hamra FK, Chapman KM, Wu Z, Garbers DL. Isolating highly pure rat spermatogonial stem cells in culture. Methods Mol Biol. 2008;450:163–179.

    Article  CAS  PubMed  Google Scholar 

  42. Izadyar F, Wong J, Maki C, et al. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod. 2011;26(6):1296–1306.

    Article  PubMed  Google Scholar 

  43. Choi YH, Park CH, Kim W, et al. Vaccinia-related kinase 1 is required for the maintenance of undifferentiated spermatogonia in mouse male germ cells. PLoS One. 2010;5(12): e15254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gassei K, Ehmcke J, Schlatt S. Efficient enrichment of undifferentiated GFR alpha 1 + spermatogonia from immature rat testis by magnetic activated cell sorting. Cell Tissue Res. 2009; 337(1):177–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Seli MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, S., Guzeloglu-Kayisli, O., Demir, N. et al. Epab and Pabpc1 Are Differentially Expressed During Male Germ Cell Development. Reprod. Sci. 19, 911–922 (2012). https://doi.org/10.1177/1933719112446086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112446086

Keywords

Navigation