Skip to main content

Advertisement

Log in

2-Methoxyestradiol in the Pathophysiology of Endometriosis: Focus on Angiogenesis and Therapeutic Potential

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is a common condition among women of childbearing potential in which ectopic endometrial tissue is found outside the uterine cavity. Neoangiogenesis plays a major role in the development of endometriotic implants. Some evidence suggests that a disorder in the balance of proangiogenic and antiangiogenic factors that favors the former is induced by local hypoxia and is mediated by the hypoxia-inducible factor-vascular endothelium growth factor pathway could partially explain the development of this condition in some women. 2-methoxyestradiol is a biologically active metabolite of estradiol having antiangiogenic action. Changes in estradiol homeostasis have been locally observed in endometriosis. In this review, we summarize current knowledge of endometriosis pathophysiology, in particular, the balance between local 2-methoxyestradiol production and angiogenesis, which could promote the development of endometriotic lesions. 2-Methoxyestradiol emerges as a promising new candidate for the treatment of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkley KJ, Rapkin AJ, Papka RE. The pains of endometriosis. Science. 2005;308(5728):1587–1589.

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy S, Bergqvist A, Chapron C, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005; 20(10):2698–2704.

    Article  PubMed  Google Scholar 

  3. Somigliana E, Vigano P, Parazzini F, Stoppelli S, Giambattista E, Vercellini P. Association between endometriosis and cancer: a comprehensive review and a critical analysis of clinical and epidemiological evidence. Gynecol Oncol. 2006;101(2):331–341.

    Article  PubMed  Google Scholar 

  4. Meyer W. Uber eine adenomatose Wucherung der Serosa in einer Bauchnarbe. Z Geburtshilfe Gynakol. 1903;49:32–41.

    Google Scholar 

  5. Halban J. Hysteroadenosis metastatica. Wien Klin Wochenschr. 1924;37:1205–1206.

    Google Scholar 

  6. Simpson JL, Elias S, Malinak LR, Buttram VC Jr. Heritable aspects of endometriosis. I. Genetic studies. Am J Obstet Gynecol. 1980;137(3):327–331.

    Article  CAS  PubMed  Google Scholar 

  7. Zondervan KT, Weeks DE, Colman R, et al. Familial aggregation of endometriosis in a large pedigree of rhesus macaques. Hum Reprod. 2004;19(2):448–455.

    Article  PubMed  Google Scholar 

  8. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci. 2002;955:89–100.

    Article  CAS  PubMed  Google Scholar 

  10. Dunselman GA, Groothuis PG. Etiology of endometriosis: hypotheses and facts. Gynecol Obstet Invest. 2004;57(1):42–43.

    CAS  PubMed  Google Scholar 

  11. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 1984;64(2):151–154.

    CAS  PubMed  Google Scholar 

  12. Rohan RM, Fernandez A, Udagawa T, Yuan J, D’Amato RJ. Genetic heterogeneity of angiogenesis in mice. FASEB J. 2000; 14(7):871–876.

    Article  CAS  PubMed  Google Scholar 

  13. Smith SK. Angiogenesis, vascular endothelial growth factor and the endometrium. Hum Reprod Update. 1998;4(5):509–519.

    Article  CAS  PubMed  Google Scholar 

  14. Gordon JD, Shifren JL, Foulk RA, Taylor RN, Jaffe RB. Angiogenesis in the human female reproductive tract. Obstet Gynecol Surv. 1995;50(9):688–697.

    Article  CAS  PubMed  Google Scholar 

  15. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  16. Healy DL, Rogers PA, Hii L, Wingfield M. Angiogenesis: a new theory for endometriosis. Hum Reprod Update. 1998;4(5): 736–740.

    Article  CAS  PubMed  Google Scholar 

  17. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–1186.

    Article  CAS  PubMed  Google Scholar 

  18. Becker CM, D’Amato RJ. Angiogenesis and antiangiogenic therapy in endometriosis. Microvasc Res. 2007;74(2–3): 121–130.

    Article  CAS  PubMed  Google Scholar 

  19. Nisolle M, Casanas-Roux F, Anaf V, Mine JM, Donnez J. Morphometric study of the stromal vascularization in peritoneal endometriosis. Fertil Steril. 1993;59(3):681–684.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor RN, Ryan IP, Moore ES, Hornung D, Shifren JL, Tseng JF. Angiogenesis and macrophage activation in endometriosis. Ann N Y Acad Sci. 1997;828:194–207.

    Article  CAS  PubMed  Google Scholar 

  21. Groothuis PG, Nap AW, Winterhager E, Grummer R. Vascular development in endometriosis. Angiogenesis. 2005;8(2): 147–156.

    Article  CAS  PubMed  Google Scholar 

  22. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuzaki S, Canis M, Murakami T, et al. Immunohistochemical analysis of the role of angiogenic status in the vasculature of peritoneal endometriosis. Fertil Steril. 2001;76(4):712–716.

    Article  CAS  PubMed  Google Scholar 

  24. Van Langendonckt A, Donnez J, Defrere S, Dunselman GA, Groothuis PG. Antiangiogenic and vascular-disrupting agents in endometriosis: pitfalls and promises. Mol Hum Reprod. 2008; 14(5):259–268.

    Article  PubMed  CAS  Google Scholar 

  25. Oosterlynck DJ, Meuleman C, Sobis H, Vandeputte M, Koninckx PR. Angiogenic activity of peritoneal fluid from women with endometriosis. Fertil Steril. 1993;59(4):778–782.

    Article  CAS  PubMed  Google Scholar 

  26. Lin YJ, Lai MD, Lei HY, Wing LY. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147(3):1278–1286.

    Article  CAS  PubMed  Google Scholar 

  27. Akoum A, Kong J, Metz C, Beaumont MC. Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil Steril. 2002; 77(5):989–994.

    Article  PubMed  Google Scholar 

  28. McLaren J, Prentice A, Charnock-Jones DS, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dvorak HF. Discovery of vascular permeability factor (VPF). Exp Cell Res. 2006;312(5):522–526.

    Article  CAS  PubMed  Google Scholar 

  30. Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol. 2007; 62(3):179–213.

    Article  PubMed  Google Scholar 

  31. Shifren JL, Tseng JF, Zaloudek CJ, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81(8):3112–3118.

    CAS  PubMed  Google Scholar 

  32. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature. 1992;359(6398):843–845.

    Article  CAS  PubMed  Google Scholar 

  33. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxiainducible factor 1. Crit Rev Oncol Hematol. 2006;59(1): 15–26.

    Article  PubMed  Google Scholar 

  34. Becker CM, Rohwer N, Funakoshi T, et al. 2-methoxyestradiol inhibits hypoxia-inducible factor-1 {alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol. 2008; 172(2):534–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu MH, Chen KF, Lin SC, Lgu CW, Tsai SJ. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1 alpha. Am J Pathol. 2007;170(2):590–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hyder SM. Sex-steroid regulation of vascular endothelial growth factor in breast cancer. Endocr Relat Cancer. 2006; 13(3):667–687.

    Article  CAS  PubMed  Google Scholar 

  37. Kazi AA, Molitoris KH, Koos RD. Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biol Reprod. 2009; 81(2):378–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chennazhi KP, Nayak NR. Regulation of angiogenesis in the primate endometrium: vascular endothelial growth factor. Semin Reprod Med. 2009;27(1):80–89.

    Article  CAS  PubMed  Google Scholar 

  39. Dizerega GS, Barber DL, Hodgen GD. Endometriosis: role of ovarian steroids in initiation, maintenance, and suppression. Fertil Steril. 1980;33(6):649–653.

    Article  CAS  PubMed  Google Scholar 

  40. Rizner TL. Estrogen metabolism and action in endometriosis. Mol Cell Endocrinol. 2009;307(1–2):8–18.

    Article  CAS  PubMed  Google Scholar 

  41. Hyder SM, Nawaz Z, Chiappetta C, Stancel GM. Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res. 2000;60(12):3183–3190.

    CAS  PubMed  Google Scholar 

  42. Bukulmez O, Hardy DB, Carr BR, Word RA, Mendelson CR. Inflammatory status influences aromatase and steroid receptor expression in endometriosis. Endocrinology. 2008;149(3): 1190–1204.

    Article  CAS  PubMed  Google Scholar 

  43. Noble LS, Takayama K, Zeitoun KM, et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab. 1997;82(2):600–606.

    CAS  PubMed  Google Scholar 

  44. Sawaoka H, Tsuji S, Tsujii M, et al. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest. 1999;79(12): 1469–1477.

    CAS  PubMed  Google Scholar 

  45. Santanam N, Murphy AA, Parthasarathy S. Macrophages, oxidation, and endometriosis. Ann N Y Acad Sci. 2002;955:183–198.

    Article  CAS  PubMed  Google Scholar 

  46. Taylor RN, Yu J, Torres PB, et al. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 2009;16(2):140–146.

    Article  CAS  PubMed  Google Scholar 

  47. Missmer SA, Cramer DW. The epidemiology of endometriosis. Obstet Gynecol Clin North Am. 2003;30(1): 1–19.

    Article  PubMed  Google Scholar 

  48. Shaw RW. The role of GnRH analogues in the treatment of endometriosis. Br J Obstet Gynaecol. 1992;99 (suppl 7):9–12.

    Article  PubMed  Google Scholar 

  49. Shakiba K, Bena JF, McGill KM, Minger J, Falcone T. Surgical treatment of endometriosis: a 7-year follow-up on the requirement for further surgery. Obstet Gynecol. 2008;111(6):1285–1292.

    Article  PubMed  Google Scholar 

  50. Giannarini G, Scott CA, Moro U, et al. Cystic endometriosis of the epididymis. Urology. 2006;68(1):203. e1–e3.

    Article  Google Scholar 

  51. Pinkert TC, Catlow CE, Straus R. Endometriosis of the urinary bladder in a man with prostatic carcinoma. Cancer. 1979;43(4): 1562–1567.

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi K, Nagata H, Kitao M. Clinical usefulness of determination of estradiol level in the menstrual blood for patients with endometriosis. Nihon Sanka Fujinka Gakkai Zasshi. 1989; 41(11):1849–1850.

    CAS  PubMed  Google Scholar 

  53. Noble LS, Simpson ER, Johns A, Bulun SE. Aromatase expression in endometriosis. J Clin Endocrinol Metab. 1996;81(1):174–179.

    CAS  PubMed  Google Scholar 

  54. Zeitoun K, Takayama K, Sasano H, et al. Deficient 17beta-hydroxysteroid dehydrogenase type 2 expression in endometriosis: failure to metabolize 17beta-estradiol. J Clin Endocrinol Metab. 1998;83(12):4474–4480.

    CAS  PubMed  Google Scholar 

  55. Smuc T, Hevir N, Ribic-Pucelj M, et al. Disturbed estrogen and progesterone action in ovarian endometriosis. Mol Cell Endocrinol. 2009;301(1–2):59–64.

    Article  CAS  PubMed  Google Scholar 

  56. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.

    CAS  PubMed  Google Scholar 

  57. Berg D, Sonsalla R, Kuss E. Concentrations of 2-mefhoxyoestrogen in human serum measured by a heterologous immunoassay with an 1251-labelled ligand. Acta Endocrinol (Copenh). 1983; 103(2):282–288.

    Article  CAS  Google Scholar 

  58. Longcope C, Flood C, Femino A, Williams KI. Metabolism of 2-methoxyestrone in normal men. J Clin Endocrinol Metab. 1983;57(2):277–282.

    Article  CAS  PubMed  Google Scholar 

  59. Ireson CR, Chander SK, Purohit A, et al. Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer. 2004;90(4):932–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sweeney C, Liu G, Yiannoutsos C, et al. A phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer. Clin Cancer Res. 2005;11(18):6625–6633.

    Article  CAS  PubMed  Google Scholar 

  61. Xin M, You Q, Xiang H. An efficient, practical synthesis of 2-methoxyestradiol. Steroids. 2010;75(1):53–56.

    Article  CAS  PubMed  Google Scholar 

  62. Mueck AO, Seeger H. 2-Methoxyestradi—biology and mechanism of action. Steroids. 2010;75(10):625–631.

    Article  CAS  PubMed  Google Scholar 

  63. Chen CH, Lee WJ, Chang TC, et al. Antiproliferative effects of 2-methoxyestradiol alone and in combination with chemotherapeutic agents on human endometrial cancer cells. Eur J Gynaecol Oncol. 2009;30(3):275–280.

    PubMed  Google Scholar 

  64. Liu ZJ, Zhu BT. Concentration-dependent mitogenic and antiproliferative actions of 2-methoxyestradiol in estrogen receptor-positive human breast cancer cells. J Steroid Biochem Mol Biol. 2004;88(3):265–275.

    Article  CAS  PubMed  Google Scholar 

  65. Tagg SL, Foster PA, Leese MP, et al. 2-Methoxyoestradiol-3,17-O, O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. Br J Cancer. 2008;99(11):1842–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seegers JC, Aveling ML, Van Aswegen CH, Cross M, Koch F, Joubert WS. The cytotoxic effects of estradiol-17 beta, catecho-lestradiols and methoxyestradiols on dividing MCF-7 and HeLa cells. J Steroid Biochem. 1989;32(6):797-809.

    Article  CAS  PubMed  Google Scholar 

  67. Barchiesi F, Jackson EK, Gillespie DG, Zacharia LC, Fingerle J, Dubey RK. Methoxyestradiols mediate estradiol-induced antimitogenesis in human aortic SMCs. Hypertension. 2002;39(4): 874–879.

    Article  CAS  PubMed  Google Scholar 

  68. Sutherland TE, Anderson RL, Hughes RA, et al. 2-Methoxyestradiol-a unique blend of activities generating a new class of anti-tumour/anti-inflammatory agents. Drug Discov Today. 2007; 12(13–14):577–584.

    Article  CAS  PubMed  Google Scholar 

  69. Barchiesi F, Jackson EK, Fingerle J, et al. 2-Methoxyestradiol, an estradiol metabolite, inhibits neointima formation and smooth muscle cell growth via double blockade of the cell cycle. Circ Res. 2006;99(3):266–274.

    Article  CAS  PubMed  Google Scholar 

  70. Salama SA, Nasr AB, Dubey RK, Al-Hendy A. Estrogen metabolite 2-methoxyestradiol induces apoptosis and inhibits cell proliferation and collagen production in rat and human leiomyoma cells: a potential medicinal treatment for uterine fibroids. J Soc Gynecol Investig. 2006;13(8):542–550.

    Article  CAS  PubMed  Google Scholar 

  71. D’Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci U S A. 1994;91(9):3964–3968.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol. 2001;280(3):F365–F388.

    Article  CAS  PubMed  Google Scholar 

  73. Nishigaki I, Sasaguri Y, Yagi K. Anti-proliferative effect of 2-methoxyestradiol on cultured smooth muscle cells from rabbit aorta. Atherosclerosis. 1995;113(2):167–170.

    Article  CAS  PubMed  Google Scholar 

  74. Huerta-Yepez S, Baay-Guzman GJ, Garcia-Zepeda R, et al. 2-Methoxyestradiol (2-ME) reduces the airway inflammation and remodeling in an experimental mouse model. Clin Immunol. 2008;129(2):313–324.

    Article  CAS  PubMed  Google Scholar 

  75. Laurent A, Nicco C, Chereau C, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3):948–956.

    CAS  PubMed  Google Scholar 

  76. Dubey RK, Tofovic SP, Jackson EK. Cardiovascular pharmacology of estradiol metabolites. J Pharmacol Exp Ther. 2004;308(2): 403–409.

    Article  CAS  PubMed  Google Scholar 

  77. Dubey RK, Tyurina YY, Tyurin VA, et al. Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Circ Res. 1999; 84(2):229–239.

    Article  CAS  PubMed  Google Scholar 

  78. Dubey RK, Jackson EK. Potential vascular actions of 2-methoxyestradiol. Trends Endocrinol Metab. 2009;20(8):374–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gui Y, Zheng XL. 2-Methoxyestradiol induces cell cycle arrest and mitotic cell apoptosis in human vascular smooth muscle cells. Hypertension. 2006;47(2):271–280.

    Article  CAS  PubMed  Google Scholar 

  80. Dawling S, Roodi N, Parl FF. Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res. 2003;63(12):3127–3132.

    CAS  PubMed  Google Scholar 

  81. Fulda S, Debatin KM. Apoptosis pathways: turned on their heads? Drug Resist Updat. 2003;6(1): 1–3.

    Article  PubMed  Google Scholar 

  82. LaVallee TM, Zhan XH, Johnson MS, et al. 2-methoxyestradiol up-regulates death receptor 5 and induces apoptosis through activation of the extrinsic pathway. Cancer Res. 2003;63(2): 468–475.

    CAS  PubMed  Google Scholar 

  83. Mooberry SL. Mechanism of action of 2-methoxyestradiol: new developments. Drug Resist Updat. 2003;6(6):355–361.

    Article  CAS  PubMed  Google Scholar 

  84. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 2005;15(1):36–42.

    Article  PubMed  Google Scholar 

  85. Chauhan D, Li G, Hideshima T, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2003;278(20): 17593–17596.

    Article  CAS  PubMed  Google Scholar 

  86. Ting CM, Lee YM, Wong CK, et al. 2-Methoxyestradiol induces endoreduplication through the induction of mitochondrial oxidative stress and the activation of MAPK signaling pathways. Biochem Pharmacol. 2010;79(6):825–841.

    Article  CAS  PubMed  Google Scholar 

  87. Fukui M, Zhu BT. Mechanism of 2-methoxyestradiol-induced apoptosis and growth arrest in human breast cancer cells. Mol Carcinog. 2009;48(1):66–78.

    Article  CAS  PubMed  Google Scholar 

  88. Gao N, Rahmani M, Dent P, Grant S. 2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Akt-dependent process. Oncogene. 2005; 24(23):3797–3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Djavaheri-Mergny M, Wietzerbin J, Besancon F. 2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production. Oncogene. 2003;22(17):2558–2567.

    Article  CAS  PubMed  Google Scholar 

  90. She MR, Li JG, Guo KY, Lin W, Du X, Niu XQ. Requirement of reactive oxygen species generation in apoptosis of leukemia cells induced by 2-methoxyestradiol. Acta Pharmacol Sin. 2007;28(7): 1037–1044.

    Article  CAS  PubMed  Google Scholar 

  91. Sattler M, Quinnan LR, Pride YB, et al. 2-Methoxyestradiol alters cell motility, migration, and adhesion. Blood. 2003;102(1):289–296.

    Article  CAS  PubMed  Google Scholar 

  92. Pani G, Colavitti R, Bedogni B, et al. Mitochondrial superoxide dismutase: a promising target for new anticancer therapies. Curr Med Chem. 2004;11(10):1299–1308.

    Article  CAS  PubMed  Google Scholar 

  93. Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3(4):363-375.

    Article  CAS  PubMed  Google Scholar 

  94. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365(6):537–547.

    Article  CAS  PubMed  Google Scholar 

  95. Chua YS, Chua YL, Hagen T. Structure activity analysis of 2-methoxyestradiol analogues reveals targeting of microtubules as the major mechanism of antiproliferative and proapoptotic activity. Mol Cancer Ther. 2010;9(1):224–235.

    Article  CAS  PubMed  Google Scholar 

  96. Dang DT, Chen F, Gardner LB, et al. Hypoxia-inducible factor-1alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts. Cancer Res. 2006;66(3): 1684–1936.

    Article  CAS  PubMed  Google Scholar 

  97. Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–490.

    Article  CAS  PubMed  Google Scholar 

  98. Ryan HE, Poloni M, McNulty W, et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000;60(15):4010–4015.

    CAS  PubMed  Google Scholar 

  99. Fotsis T, Zhang Y, Pepper MS, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature. 1994;368(6468):237–239.

    Article  CAS  PubMed  Google Scholar 

  100. Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997;57(1):81–86.

    CAS  PubMed  Google Scholar 

  101. Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23(2): 165–172.

    Article  CAS  PubMed  Google Scholar 

  102. LaVallee TM, Zhan XH, Herbstritt CJ, Rough EC, Green SJ, Pribluda VS. 2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta. Cancer Res. 2002;62(13):3691–3697.

    CAS  PubMed  Google Scholar 

  103. Lippert TH, Adlercreutz H, Berger MR, Seeger H, Elger W, Mueck AO. Effect of 2-methoxyestradiol on the growth of methyl-nitroso-urea (MNU)-induced rat mammary carcinoma. J Steroid Biochem Mol Biol. 2003;84(1):51–56.

    Article  CAS  PubMed  Google Scholar 

  104. Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: Insights into the structural determinants favoring a differential subtype binding. Endocrinology. 2006;147(9):4132–4150.

    Article  CAS  PubMed  Google Scholar 

  105. Sutherland TE, Schuliga M, Harris T, et al. 2-Methoxyestradiol is an estrogen receptor agonist that supports tumor growth in murine xenograft models of breast cancer. Clin Cancer Res. 2005;11(5):1722–1732.

    Article  CAS  PubMed  Google Scholar 

  106. McCormick D, Johnson W, Pribluda V, et al. Preclinical development of 2-methoxyestradiol (2ME2. NSC-659853). Proc Am Assoc Cancer Res. 2000;41:328.

    Google Scholar 

  107. Lucidi RS, Witz CA, Chrisco M, Binkley PA, Shain SA, Schenken RS. A novel in vitro model of the early endometriotic lesion demonstrates that attachment of endometrial cells to mesothelial cells is dependent on the source of endometrial cells. Fertil Steril. 2005;84(1): 16–21.

    Article  PubMed  Google Scholar 

  108. Laschke MW, Menger MD. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Hum Reprod Update. 2007;13(4):331–342.

    Article  CAS  PubMed  Google Scholar 

  109. Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG. Immune interactions in endometriosis. Expert Rev Clin Immunol. 2011; 7(5):611–626.

    Article  PubMed  PubMed Central  Google Scholar 

  110. D’Hooghe TM, Debrock S, Hill JA, Meuleman C. Endometriosis and subfertility: is the relationship resolved? Semin Reprod Med. 2003;21(2):243–254.

    Article  PubMed  Google Scholar 

  111. Keenan JA, Chen TT, Chadwell NL, Torry DS, Caudle MR. Interferon-gamma (IFN-gamma) and interleukin-6 (IL-6) in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am J Reprod Immunol. 1994; 32(3):180–183.

    Article  CAS  PubMed  Google Scholar 

  112. Rana N, Braun DP, House R, Gebel H, Rotman C, Dmowski WP. Basal and stimulated secretion of cytokines by peritoneal macrophages in women with endometriosis. Fertil Steril. 1996;65(5):925–930.

    Article  CAS  PubMed  Google Scholar 

  113. Halme J, Becker S, Wing R. Accentuated cyclic activation of peritoneal macrophages in patients with endometriosis. Am J Obstet Gynecol. 1984;148(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  114. Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Plum SM, Park EJ, Strawn SJ, Moore EG, Sidor CF, Fogler WE. Disease modifying and antiangiogenic activity of 2-methoxyestradiol in a murine model of rheumatoid arthritis. BMC Musculoskelet Disord. 2009;10:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Tofovic SP, Zhang X, Jackson EK, Zhu H, Petrusevska G. 2-Methoxyestradiol attenuates bleomycin-induced pulmonary hypertension and fibrosis in estrogen-deficient rats. Vascul Pharmacol. 2009;51(2–3):190–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shand FH, Langenbach SY, Keenan CR, et al. In vitro and in vivo evidence for anti-inflammatory properties of 2-methoxyestradiol. J Pharmacol Exp Ther. 2011;336(3):962–972.

    Article  CAS  PubMed  Google Scholar 

  118. Issekutz AC, Sapru K. Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: an effect independent of an antiangiogenic action. Int Immunopharmacol. 2008;8(5):708–716.

    Article  CAS  PubMed  Google Scholar 

  119. Bonacasa B, Sanchez ML, Rodriguez F, et al. 2-Methoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats. Maturitas. 2008; 61(4):310–316.

    Article  CAS  PubMed  Google Scholar 

  120. Dubey RK, Gillespie DG, Keller PJ, Imthurn B, Zacharia LC, Jackson EK. Role of methoxyestradiols in the growth inhibitory effects of estradiol on human glomerular mesangial cells. Hypertension. 2002;39(2 Pt 2):418–424.

    Article  CAS  PubMed  Google Scholar 

  121. Kanasaki K, Palmsten K, Sugimoto H, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453(7198): 1117–1121.

    Article  CAS  PubMed  Google Scholar 

  122. Dragun D, Haase-Fielitz A. Low catechol-O-methyltransferase and 2-methoxyestradiol in preeclampsia: more than a unifying hypothesis. Nephrol Dial Transplant. 2009;24(1):31–33.

    Article  CAS  PubMed  Google Scholar 

  123. Stone RL, Sood AK, Coleman RL. Collateral damage: toxic effects of targeted antiangiogenic therapies in ovarian cancer. Lancet Oncol. 2010;11(5):465–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Verenich S, Gerk PM. Therapeutic promises of 2-methoxyestradiol and its drug disposition challenges. Mol Pharm. 2010;7(6):2030–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dahut WL, Lakhani NJ, Gulley JL, et al. Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol Ther. 2006;5(1):22–27.

    Article  CAS  PubMed  Google Scholar 

  126. Tevaarwerk AJ, Holen KD, Alberti DB, et al. Phase I trial of 2-methoxyestradiol NanoCrystal dispersion in advanced solid malignancies. Clin Cancer Res. 2009;15(4):1460–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Molema G. Tumor vasculature directed drug targeting: applying new technologies and knowledge to the development of clinically relevant therapies. Pharm Res. 2002;19(9):1251–1258.

    Article  CAS  PubMed  Google Scholar 

  128. Yeh CH, Chou W, Chu CC, et al. Anticancer agent 2-methoxyestradiol improves survival in septic mice by reducing the production of cytokines and nitric oxide. Shock. 2011; 36(5):510–516.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Machado-Linde MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado-Linde, F., Pelegrin, P., Sanchez-Ferrer, M.L. et al. 2-Methoxyestradiol in the Pathophysiology of Endometriosis: Focus on Angiogenesis and Therapeutic Potential. Reprod. Sci. 19, 1018–1029 (2012). https://doi.org/10.1177/1933719112446080

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112446080

Keywords

Navigation