Skip to main content

Advertisement

Log in

The Expression and Functionality of Transient Receptor Potential Vanilloid 1 in Ovarian Endometriomas

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Pains of various kinds—dysmenorrhea, chronic pelvic pain, and dyspareunia—are the major complaints from women with endometriosis, representing the most debilitating nature of the disease. Despite extensive research, our understanding as how endometriosis causes pain is still fragmentary. In this study, we examined transient receptor potential vanilloid 1 (TRPV1)-positive nerve fibers in ectopic endometrium from women with ovarian endometriomas and in endometrium from women without endometriosis and correlated the density with the severity of dysmenorrhea in cases. We also performed an immunohistochemistry analysis of TRPV1 in ectopic and control endometrium. After finding TRPV1 immunoreactivity in ectopic endometrial cells, we further examined whether TRPV1 is functional in ectopic endometrial stromal cells (EESCs). We found that the density of TRPV1-positive nerve fibers in ectopic endometrial implants is higher than that in control endometrium and correlates positively with the severity of dysmenorrhea in women with endometriosis. In addition, TRPV1 expression was also found to be elevated significantly in EESCs when stimulated with inflammatory mediators such as prostaglandin E2 (PGE2 ) and tumor necrosis factor-α (TNF-α). Finally, we found that TRPV1 activation can induce the release of nitric oxide (NO) and interleukin 1β (IL-1β) in EESCs. The latter finding appears to be consistent with the reports of increased TRPV1 protein expression following peripheral inflammation. Our results suggest that the increased TRPV1-positive nerve fibers may integrate various stimuli on peripheral terminals or primary sensory neurons and generate hyperalgesia in endometriosis. The expression and functionality of TRPV1 in EESCs also suggest that TRPV1 may have neurosecretory functions that are yet to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olive DL, Lindheim SR, Pritts EA. New medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004; 18(2):319–328.

    Article  PubMed  Google Scholar 

  2. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447): 1789–1799.

    Article  PubMed  Google Scholar 

  3. Anaf V, Simon P, El Nakadi I, et al. Relationship between endo-metriotic foci and nerves in rectovaginal endometriotic nodules. Hum Reprod. 2000;15(8):1744–1750.

    Article  PubMed  CAS  Google Scholar 

  4. Anaf V, Simon P, El Nakadi I, et al. Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum Reprod. 2002;17(7):1895–1900.

    Article  PubMed  Google Scholar 

  5. Berkley KJ, Dmitrieva N, Curtis KS, Papka RE. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A. 2004;101(30):11094–11098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Berkley KJ, Rapkin AJ, Papka RE. The pains of endometriosis. Science. 2005;308(5728):1587–1589.

    Article  PubMed  CAS  Google Scholar 

  7. Tokushige N, Markham R, Russell P, Fraser IS. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21(11):3001-3007.

    Article  PubMed  CAS  Google Scholar 

  8. Yao HJ, Huang XF, Lu BC, Zhou CY, Zhang J, Zhang XM. [Protein gene product 9.5-immunoactive nerve fibers and its clinical significance in endometriotic peritoneal lesions]. Zhonghua Fu Chan Ke Za Zhi. 2010;45(4):256–259.

    PubMed  CAS  Google Scholar 

  9. Mechsner S, Kaiser A, Kopf A, Gericke C, Ebert A, Bartley J. A pilot study to evaluate the clinical relevance of endometriosis-associated nerve fibers in peritoneal endometriotic lesions. Fertil Steril. 2009;92(6): 1856–1861.

    Article  PubMed  Google Scholar 

  10. Tokushige N, Markham R, Russell P, Fraser IS. Effects of hormonal treatment on nerve fibers in endometrium and myometrium in women with endometriosis. Fertil Steril. 2008;90(5):1589-1598.

    Article  PubMed  CAS  Google Scholar 

  11. Kelm Junior AR, Lancellotti CL, Donadio N, et al. Nerve fibers in uterosacral ligaments of women with deep infiltrating endometriosis. J Reprod Immunol. 2008;79(1):93–99.

    Article  PubMed  Google Scholar 

  12. Wang G, Tokushige N, Russell P, Dubinovsky S, Markham R, Fraser IS. Hyperinnervation in intestinal deep infiltrating endometriosis. J Minim Invasive Gynecol. 2009;16(6):713–719.

    Article  PubMed  Google Scholar 

  13. Wang G, Tokushige N, Markham R, Fraser IS. Rich innervation of deep infiltrating endometriosis. Hum Reprod. 2009;24(4):827–834.

    Article  PubMed  Google Scholar 

  14. Tokushige N, Russell P, Black K, et al. Nerve fibers in ovarian endometriomas. Fertil Steril. 2010;94(5): 1944–1947.

    Article  PubMed  Google Scholar 

  15. Zhang X, Yao H, Huang X, Lu B, Xu H, Zhou C. Nerve fibres in ovarian endometriotic lesions in women with ovarian endometriosis. Hum Reprod. 2010;25(2):392–397.

    Article  PubMed  CAS  Google Scholar 

  16. Szallasi A. Vanilloid (capsaicin) receptors in health and disease. Am J Clin Pathol. 2002;118(1):110–121.

    Article  PubMed  CAS  Google Scholar 

  17. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–824.

    Article  PubMed  CAS  Google Scholar 

  18. Okun A, DeFelice M, Eyde N, et al. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents. Mol Pain. 2011 ;7(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rocha MG, Silva JC, Ribeiro da Silva A, Candido Dos Reis FJ, Nogueira AA, Poli-Neto OB. TRPV1 expression on peritoneal endometriosis foci is associated with chronic pelvic pain. Reprod Sci. 2011;18(6):511–515.

    Article  PubMed  CAS  Google Scholar 

  20. Lu Y, Nie J, Liu X, Zheng Y, Guo SW. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice. Hum Reprod. 2010;25(4):1014–1025.

    Article  PubMed  CAS  Google Scholar 

  21. Nie J, Liu X, Guo SW. Immunoreactivity of oxytocin receptor and transient receptor potential vanilloid type 1 and its correlation with dysmenorrhea in adenomyosis. Am J Obstet Gynecol. 2010;202(4):346. e341–e348.

    Article  CAS  Google Scholar 

  22. Wang-Tilz YTC, Wang B, Tilz GP, Stefan H. Influence of lamotrigine and topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia. 2006;47(2):233–239.

    Article  PubMed  CAS  Google Scholar 

  23. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1995;36(2):169–180.

    Article  PubMed  CAS  Google Scholar 

  24. Lockwood CJNY, Guller S, Krikun G, et al. Progestational regulation of human endometrial stromal cell tissue factor expression during decidualization. J Clin Endocrinol Metab. 1993;76(1): 231–236.

    PubMed  CAS  Google Scholar 

  25. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Edited by New York, NY: Wiley; 1980.

    Google Scholar 

  26. Inhaka R, Gentleman RR. R: a language for data analysis and graphics. J Comput Graph Statist. 1996;5(3):1923–1927.

    Google Scholar 

  27. Moriyama T, Higashi T, Togashi K, et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Molecular Pain 2005;1:3. doi:10.1186/1744-8069–1–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Henselleka SBP, Schaiblea HG, Bräuerb R, Bancheta GS. The cytokine TNFα increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol Cell Neurosci. 2007;36(3):381–391.

    Article  CAS  Google Scholar 

  29. Carlton SM, Coggeshall RE. Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neurosci Lett. 2001;310(l):53–56.

    Article  PubMed  CAS  Google Scholar 

  30. Yiangou Y, Facer P, Dyer NHC, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet. 2001;357(9265): 1338–1339.

    Article  PubMed  CAS  Google Scholar 

  31. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron. 2002;36(1):57–68.

    Article  PubMed  CAS  Google Scholar 

  32. Amaya F, Oh-Hashi K, Naruse Y, et al. Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res. 2003;963(1–2): 190–196.

    Article  PubMed  CAS  Google Scholar 

  33. Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch. 2005;451(1):143–150.

    Article  PubMed  CAS  Google Scholar 

  34. Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51(2):159–211.

    PubMed  CAS  Google Scholar 

  35. Sasamura T, Sasaki M, Tohda C, Kuraishi Y. Existence of capsaicin-sensitive glutamatergic terminals in rat hypothalamus. Neuroreport. 1998;9(9):2045–2048.

    Article  PubMed  CAS  Google Scholar 

  36. Mezey E, Toth ZE, Cortright DN, et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A. 2000;97(7):3655–3660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–824.

    Article  PubMed  CAS  Google Scholar 

  38. Veronesi B, Oortgiesen M, Carter JD, Devlin RB. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol Appl Pharmacol. 1999;154(1):106–115.

    Article  PubMed  CAS  Google Scholar 

  39. Denda MFS, Inoue K, Denda S, Akamatsu H, Tomitaka A, Matsimaga K. Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun. 2001;285(5): 1250–1252.

    Article  PubMed  CAS  Google Scholar 

  40. Inoue K, Koizumi S, Fuziwara S, Denda S, Denda M. Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun. 2002;291(1):124–129.

    Article  PubMed  CAS  Google Scholar 

  41. Birder LA, Kanai AJ, de Groat WC, et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci U S A. 2001;98(23):13396–13401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Myers BR, Julius D. TRP channel structural biology: new roles for an old fold. Neuron. 2007;54(6):847–850.

    Article  PubMed  CAS  Google Scholar 

  43. Meller ST, Gebhart GF. Nitric-Oxide(NO) and nociceptive processing in the spinal-cord. Pain. 1993;52(2): 127–136.

    Article  PubMed  CAS  Google Scholar 

  44. Luo ZD, Cizkova D. The role of nitric oxide in nociception. Curr Rev Pain. 2000;4(6):459–466.

    Article  PubMed  CAS  Google Scholar 

  45. Poblete LM, Orliac ML, Briones R, Adler-Graschinsky E, Huidobro-Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol London. 2005;568(pt 2):539–551.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43(2):109–142.

    PubMed  CAS  Google Scholar 

  47. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–2012.

    Article  PubMed  CAS  Google Scholar 

  48. Dong M, Shi Y, Cheng Q, Hao M. Increased nitric oxide in peritoneal fluid from women with idiopathic infertility and endometriosis. J Reprod Med. 2001;46(10):887–891.

    PubMed  CAS  Google Scholar 

  49. Osborn BH, Haney AF, Misukonis MA, Weinberg JB. Inducible nitric oxide synthase expression by peritoneal macrophages in endometriosis-associated infertility. Fertil Steril. 2002;77(1): 46–51.

    Article  PubMed  Google Scholar 

  50. Wu MY, Chao KH, Yang JH, Lee TH, Yang YS, Ho HN. Nitric oxide synthesis is increased in the endometrial tissue of women with endometriosis. Hum Reprod. 2003;18(12):2668–2671.

    Article  PubMed  CAS  Google Scholar 

  51. Goteri G, Lucarini G, Zizzi A, et al. Proangiogenetic molecules, hypoxia-inducible factor-lalpha and nitric oxide synthase isoforms in ovarian endometriotic cysts. Virchows Arch. 2010; 456(6):703–710.

    Article  PubMed  CAS  Google Scholar 

  52. Mori H, Sawairi M, Nakagawa M, Itoh N, Wada K, Tamaya T. Expression of interleukin-1 (IL-1) beta messenger ribonucleic acid (mRNA) and IL-1 receptor antagonist mRNA in peritoneal macrophages from patients with endometriosis. Fertil Steril. 1992;57(3):535–542.

    Article  PubMed  CAS  Google Scholar 

  53. Bergqvist A, Bruse C, Carlberg M, Carlstrom K. Interleukin 1beta, interleukin-6, and tumor necrosis factor-alpha in endometriotic tissue and in endometrium. Fertil Steril. 2001;75(3):489–495.

    Article  PubMed  CAS  Google Scholar 

  54. Cheong YC, Shelton JB, Laird SM, et al. IL-1, IL-6 and TNF-alpha concentrations in the peritoneal fluid of women with pelvic adhesions. Hum Reprod. 2002;17(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  55. Akoum A, Jolicoeur C, Boucher A. Estradiol amplifies interleukin-1-induced monocyte chemotactic protein-1 expression by ectopic endometrial cells of women with endometriosis. J Clin Endocrinol Metab. 2000;85(2):896–904.

    PubMed  CAS  Google Scholar 

  56. Akoum A, Lawson C, McColl S, Villeneuve M. Ectopic endometrial cells express high concentrations of interleukin (IL)-8 in vivo regardless of the menstrual cycle phase and respond to oestradiol by up-regulating IL-1-induced IL-8 expression in vitro. Mol Hum Reprod. 2001;7(9):859-866.

    Article  PubMed  CAS  Google Scholar 

  57. Lebovic DI, Chao VA, Martini JF, Taylor RN. IL-1beta induction of RANTES (regulated upon activation, normal T cell expressed and secreted) chemokine gene expression in endometriotic stromal cells depends on a nuclear factor-kappaB site in the proximal promoter. J Clin Endocrinol Metab. 2001;86(10):4759–4764.

    PubMed  CAS  Google Scholar 

  58. Akoum A, Lemay A, Maheux R. Estradiol and interleukin-1beta exert a synergistic stimulatory effect on the expression of the chemokine regulated upon activation, normal T cell expressed, and secreted in endometriotic cells. J Clin Endocrinol Metab. 2002; 87(12):5785–5792.

    Article  PubMed  CAS  Google Scholar 

  59. Wu MH, Wang CA, Lin CC, Chen LC, Chang WC, Tsai SJ. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. J Clin Endocrinol Metab. 2005;90(1):286–295.

    Article  PubMed  CAS  Google Scholar 

  60. Sugiura T, Tominaga M, Katsuya H, Mizumura K. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol. 2002;88(1):544–548.

    Article  PubMed  CAS  Google Scholar 

  61. Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A. 2001;98(12):6951–6956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ristoiu V, Shibasaki K, Uchida K, et al. Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain. 2011; 152(4):936–945.

    Article  PubMed  CAS  Google Scholar 

  63. Diogenes A, Patwardhan AM, Jeske NA, et al. Prolactin modulates TRPV1 in female rat trigeminal sensory neurons. J Neurosci. 2006;26(31):8126–8136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lima AP, Moura MD, Rosa e Silva AA. Prolactin and Cortisol levels in women with endometriosis. Braz J Med Biol Res. 2006; 39(8):1121–1127.

    Article  PubMed  CAS  Google Scholar 

  65. Jordt SE, McKemy DD, Julius D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol. 2003;13(4):487–492.

    Article  PubMed  CAS  Google Scholar 

  66. Hucho T, Levine JD. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron. 2007;55(3):365–376.

    Article  PubMed  CAS  Google Scholar 

  67. Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM. Roles of transient receptor potential channels in pain. Brain Res Rev. 2009;60(1):2–23.

    Article  PubMed  CAS  Google Scholar 

  68. Studer M, McNaughton PA. Modulation of single-channel properties of TRPV1 by phosphorylation. J Physiol. 2010;588(pt 19):3743–3756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Palazzo E, Luongo L, de Novellis V, Rossi F, Marabese I, Maione S. Transient receptor potential vanilloid type 1 and pain development. Curr Opin Pharmacol. 2011;12(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  70. Atwal G, du Plessis D, Armstrong G, Slade R, Quinn M. Uterine innervation after hysterectomy for chronic pelvic pain with, and without, endometriosis. Am J Obstet Gynecol. 2005;193(5): 1650–1655.

    Article  PubMed  Google Scholar 

  71. McAllister SL, McGinty KA, Resuehr D, Berkley KJ. Endometriosis-induced vaginal hyperalgesia in the rat: role of the ectopic growths and their innervation. Pain. 2009;147(1–3): 255–264.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tokushige N, Markham R, Russell P, Fraser IS. Different types of small nerve fibers in eutopic endometrium and myometrium in women with endometriosis. Fertil Steril. 2007;88(4):795–803.

    Article  PubMed  Google Scholar 

  73. Tokushige N, Markham R, Russell P, Fraser IS. High density of small nerve fibres in the functional layer of the endometrium in women with endometriosis. Hum Reprod. 2006; 21(3):782–787.

    Article  CAS  PubMed  Google Scholar 

  74. Quinn MJ. Endometriosis: the consequence of uterine denervation-reinnervation. Arch Gynecol Obstet. 2011;284(6): 1423–1429.

    Article  PubMed  Google Scholar 

  75. Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280(4):529–538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. He W, Liu X, Zhang Y, Guo SW. Generalized hyperalgesia in women with endometriosis and its resolution following a successful surgery. Reprod Sci. 2010;17(12):1099–1111.

    Article  PubMed  Google Scholar 

  77. Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U SA. 2001;98(12):6951–6956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Wei Guo PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Liu, X., Duan, K. et al. The Expression and Functionality of Transient Receptor Potential Vanilloid 1 in Ovarian Endometriomas. Reprod. Sci. 19, 1110–1124 (2012). https://doi.org/10.1177/1933719112443876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112443876

Keywords

Navigation