Skip to main content

Melatonin and the Circadian Timing of Human Parturition

Abstract

Although the onset of spontaneous human parturition has long been known to occur preferentially during the nighttime and early morning hours, no convincing physiological explanation for this pattern has yet been proposed. This review focuses on the circadian timing of mammalian parturition, particularly in the human. It is proposed that differences in the phasing of parturition among different species are likely a function of opposite uterine responses to humoral cues, in particular those coding for time of day. The brain hormone melatonin fulfills many of the prerequisites to serve as a circadian signal for initiating uterine contractions that lead to human parturition. These encompass direct actions of melatonin on myometrial smooth muscle cells that are synergistic with oxytocin in facilitating greater uterine contractions at night. This may not only help to explain the nocturnal phasing of human parturition but also open new avenues for the management of term and preterm labor.

This is a preview of subscription content, access via your institution.

References

  1. Plaut SM, Grota LJ, Ader R, Graham CW. Effects of handling and the light-dark cycle on time of parturition in the rat. Lab Anim Care. 1970;20(3):447–453.

    CAS  PubMed  Google Scholar 

  2. Boer K, Lincoln DW, Swaab DF. Effects of electrical stimulation of the neurohypophysis on labour in the rat. J Endocrinol. 1975;65(2):163–176.

    CAS  PubMed  Article  Google Scholar 

  3. Lincoln DW, Porter DG. Timing of the photoperiod and the hour of birth in rats. Nature. 1976;260(5554):780–781.

    CAS  PubMed  Article  Google Scholar 

  4. Siegel HI, Greenwald GS. Prepartum onset of maternal behavior in hamsters and the effects of estrogen and progesterone. Horm Behav. 1975;6(3):237–245.

    CAS  PubMed  Article  Google Scholar 

  5. Glattre E, Bjerkedal T. The 24-hour rhythmicity of birth: a population study. Acta Obstet Gynecol Scand. 1983;62:31–36.

    CAS  PubMed  Article  Google Scholar 

  6. Cooperstock M, England JE, Wolfe RA. Circadian incidence of labor onset hour in preterm birth and chorioamnionitis. Obstet Gynecol. 1987;70(6):852–855.

    CAS  PubMed  Google Scholar 

  7. Cagnacci A, Soldani R, Melis GB, Volpe A. Diurnal rhythms of labor and delivery in women: modulation by parity and seasons. Am J Obstet Gynecol. 1998;178(1 pt 1):140–145.

    CAS  PubMed  Article  Google Scholar 

  8. Lindow SW, Jha RR, Thompson JW. 24-hour rhythm to the onset of preterm labour. Br J Obstet Gynecol. 2000;107(9):1145–1148.

    CAS  Article  Google Scholar 

  9. Vatish M, Steer PJ, Blanks AM, Hon M, Thornton S. Diurnal variation is lost in preterm deliveries before 28 weeks of gestation. Br J Obstet Gynecol. 2010;117(6):765–767.

    CAS  Article  Google Scholar 

  10. Iams JD, Newman RB, Thom EA, et al. Frequency of uterine contractions and the risk of spontaneous preterm delivery. N Engl J Med. 2002;346(4):250–255.

    PubMed  Article  Google Scholar 

  11. Harbert GM Jr. Biorhythms of the pregnant uterus (Macaca mulatta). Am J Obstet Gynecol. 1977;129(4):401–408.

    CAS  PubMed  Article  Google Scholar 

  12. Morgan MA, Silavin SL, Wentworth RA, et al. Different patterns of myometrial activity and 24-h rhythms in myometrial contractility in the gravid baboon during the second half of pregnancy. Biol Reprod. 1992;46(6):1158–1164.

    CAS  PubMed  Article  Google Scholar 

  13. Honnebier MBOM, Myers T, Figueroa JP, Nathanielsz PW. Variations in myometrial response to intravenous oxytocin administration at different times of the day in the pregnant rhesus monkey. Endocrinology. 1989;125(3):1498–1503.

    CAS  PubMed  Article  Google Scholar 

  14. Ducsay CA, Yellon SM. Photoperiod regulation of uterine activity and melatonin rhythms in the pregnant rhesus macaque. Biol Reprod. 1991;44(6):967–974.

    CAS  PubMed  Article  Google Scholar 

  15. Main DM, Grisso JA, Wold T, Snyder ES, Holmes J, Chiu G. Extended longitudinal study of uterine activity among low-risk women. Am J Obstet Gynecol. 1991;165(5 pt 1):1317–1322.

    CAS  PubMed  Article  Google Scholar 

  16. Zahn V, Hattensperger W. Circadian rhythm of pregnancy contractions. Z Geburtshilfe Perinatol. 1993;197(1):1–10.

    CAS  PubMed  Google Scholar 

  17. Farber DM, Giussani DA, Jenkins SL, et al. Timing of the switch from myometrial contractures to contractions in late-gestation pregnant rhesus monkeys as recorded by myometrial electromyogram during spontaneous term and androstenedione-induced labor. Biol Reprod. 1997;56(2):557–562.

    CAS  PubMed  Article  Google Scholar 

  18. Prasai MJ, Pernicova I, Grant PJ, Scott EM. An endocrinologist’s guide to the clock. J Clin Endocrinol Metab. 2011;96(4):913–922.

    CAS  PubMed  Article  Google Scholar 

  19. Messager S, Hazlerigg DG, Mercer JG, Morgan PJ. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. Eur J Neurosci. 2000;12(8):2865–2870.

    CAS  PubMed  Article  Google Scholar 

  20. von Gall C, Garabette ML, Kell CA, et al. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci. 2002;5(3):234–238.

    Article  CAS  Google Scholar 

  21. Imbesi M, Dirim DA, Yildiz S, et al. The melatonin receptor MT1 is required for the differential regulatory actions of melatonin on neuronal clock gene expression in striatal neurons in vitro. J Pineal Res. 2009;46(1):87–94.

    CAS  PubMed  Article  Google Scholar 

  22. Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002;309(1):193–199.

    CAS  PubMed  Article  Google Scholar 

  23. Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol. 2009;200(1):3–22.

    CAS  PubMed  Article  Google Scholar 

  24. Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120(7):2600–2609.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935–941.

    CAS  PubMed  Article  Google Scholar 

  26. Reppert SM, Henshaw D, Schwartz WJ, Weaver DR. The circadian-gated timing of birth in rats: disruption by maternal SCN lesions or by removal of the fetal brain. Brain Res. 1987;403(2):398–402.

    CAS  PubMed  Article  Google Scholar 

  27. Arendt J. Melatonin in humans: it’s about time. J Neuroendocrinol. 2006;17(8):537–538.

    Article  Google Scholar 

  28. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62(3):343–380.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Takayama H, Nakamura Y, Tamura H, et al. 2003. Pineal gland (melatonin) affects the parturition time, but not luteal function and fetal growth, in pregnant rats. Endocrine J. 2003;50(1):37–43.

    CAS  Article  Google Scholar 

  30. Roizen J, Luedke CE, Herzog ED, Muglia LJ. Oxytocin in the circadian timing of birth. PLoS One. 2007;2(9):e922.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Young WS, Shepard E, Amico J, et al. Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J Neuroendocrin. 1996;8(11):847–853.

    CAS  Article  Google Scholar 

  32. Nishimori K, Youn LJ, Guo Q, Wang Z, Insel TR, Matzuk MM. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci U S A. 1996;93(21):11699–11704.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Takayanagi Y, Yoshida M, Bielsky IF, et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A. 2005;102(44):16096–16101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Lipschitz DL, Crowley WR, Bealer SL. Central blockade of oxytocin receptors during late gestation disrupts systemic release of oxytocin during suckling in rats. J Neuroendocrinol. 2003;15(8):743–748.

    CAS  PubMed  Article  Google Scholar 

  35. Goto M, Oshima I, Hasegawa M, Ebihara S. The locus controlling pineal serotonin N-acetyltransferase activity (Nat-2) is located on mouse chromosome 11. Brain Res Mol Brain Res. 1994;21(3–4):349–354.

    CAS  PubMed  Article  Google Scholar 

  36. Zakar T, Hertelendy F. Progesterone withdrawal: key to parturition. Am J Obstet Gynecol. 2007;196(4):289–296.

    CAS  PubMed  Article  Google Scholar 

  37. Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol 2009;23(7):947–954.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R525–545.

    CAS  PubMed  Article  Google Scholar 

  39. Smith R, Nicholson RC. Corticotropin releasing hormone and the timing of birth. Front Biosci. 2007;12:912–918.

    CAS  PubMed  Article  Google Scholar 

  40. Kalantaridou SN, Zoumakis E, Makrigiannakis A, Lavasidis LG, Vrekoussis T, Chrousos GP. Corticotropin-releasing hormone, stress and human reproduction: an update. J Repro Immun. 2010;85(1):33–39.

    CAS  Article  Google Scholar 

  41. Petraglia F, Imperatore A, Challis JRG. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev. 2010;31(6):783–816.

    CAS  PubMed  Article  Google Scholar 

  42. Challis JRG, Workewych JV, Patrick JE. Diurnal changes in the concentration of progesterone in the plasma of women at 34–35 weeks of gestation. J Endocrinol. 1981;89(3):337–341.

    CAS  PubMed  Article  Google Scholar 

  43. Junkermann H, Mangold H, Vecsei P, Runnenbaum B. Circadian rhythm of serum progesterone levels in human pregnancy and its relation to the rhythm of cortisol. Acta Endocrinol. 1982;101(1):98–104.

    CAS  Article  Google Scholar 

  44. Challis JRG, Sprague C, Patrick JE. Relation between diurnal changes in peripheral plasma progesterone, cortisol, and estriol in normal women at 30–31, 34–35 and 38–39 weeks of gestation. Gynecol Obstet Invest. 1983;16(1):33–44.

    CAS  PubMed  Article  Google Scholar 

  45. Nathanielsz PW, Giussani DA, Mecenas CA, et al. Regulation of the switch from myometrial contractures to contractions in late pregnancy: studies in the pregnant sheep and monkey. Reprod Fertil Dev. 1995;7(3):595–602.

    CAS  PubMed  Article  Google Scholar 

  46. Leake RD, Weitzman RE, Glatz TH, Fisher DA. Plasma oxytocin cincentratins in men, nonpregnant women and pregnant women before and during spontaneous labor. J Clin Endocrinol Metab. 1981;53(4):730–733.

    CAS  PubMed  Article  Google Scholar 

  47. Thornton S, Davison JM, Baylis PH. Plasma oxytocin during the first and second stages of spontaneous human labour. Acta Endocrinol. 1992;126(5):425–429.

    CAS  Article  Google Scholar 

  48. Chard T. Fetal and maternal oxytocin in human parturition. Am J Perinatol. 1989;6(2):145–152.

    CAS  PubMed  Article  Google Scholar 

  49. Fuchs AR, Fuchs F, Husslein P, Soloff MS. Oxytocin receptors in the human uterus during pregnancy and parturition. Am J Obstet Gynecol. 1984;150(6):734–741.

    CAS  PubMed  Article  Google Scholar 

  50. Havelock JC, Keller P, Muleba N, et al. Human myometrial gene expression before and during parturition. Biol Reprod. 2005;72(3):707–719.

    CAS  PubMed  Article  Google Scholar 

  51. Sharkey JT, Puttaramu R, Word RA, Olcese J. Melatonin synergizes with oxytocin to enhance contractility of human myometrial smooth muscle cells. J Clin Endocrinol Metab. 2009;94(2):421–427.

    CAS  PubMed  Article  Google Scholar 

  52. Hertz-Eshel M, Rahamimoff R. Effect of melatonin on uterine contractility. Life Sci. 1965;4(14):1367–1372.

    CAS  PubMed  Article  Google Scholar 

  53. Burns JK. Effects of melatonin on some blood constituents and on uterine contractility in the rat. J Physiol. 1972;226(2):106P–107P.

    CAS  PubMed  Google Scholar 

  54. Gimeno MF, Landa A, Sterin-Speziale N, Cardinali DP, Gimeno AL. Melatonin blocks in vitro generation of prostaglandin by the uterus and hypothalamus. Eur J Pharmacol. 1980;62(4):309–317.

    CAS  PubMed  Article  Google Scholar 

  55. Abd-Allah AR, El-Sayed el SM, Abdel-Wahab MH, Hamada FM. Effect of melatonin on estrogen and progesterone receptors in relation to uterine contraction in rats. Pharmacol Res. 2003;47(4):349–354.

    CAS  PubMed  Article  Google Scholar 

  56. Cardinali DP, Ritta MN, Fuentes AM, Gimeno MF, Gimeno AL. Prostaglandin E release by rat medial basal hypothalamus in vitro. Inhibition by melatonin at submicromolar concentrations. Eur J Pharmacol. 1980;67(1):151–153.

    CAS  PubMed  Article  Google Scholar 

  57. Franchi AM, Gimeno MF, Cardinali DP, Vacas MI. Melatonin, 5-methoxytryptamine and some of their analogs as cyclo-oxygenase inhibitors in rat medial basal hypothalamus. Brain Res. 1987;405(2):384–388.

    CAS  PubMed  Article  Google Scholar 

  58. Wu KK. Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediators. Prostagl Leukotr Essent Fatty Acids. 2005;72(2):89–93.

    CAS  Article  Google Scholar 

  59. Deng WG, Tang ST, Tseng HP, Wu KK. Melatonin suppresses macrophage cyclo-oxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood. 2006;108(2):518–524.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Cohen M, Roselle D, Chabner B, Schmidt TJ, Lippman M. Evidence for a cytoplasmic melatonin receptor. Nature. 1978;274:894–895.

    CAS  PubMed  Article  Google Scholar 

  61. Zhao H, Poon AM, Pang SF. Pharmacological characterization, molecular subtyping, and autoradiographic localization of putative melatonin receptors in the uterine endometrium of estrous rats. Life Sci. 2000;66(17):1581–1591.

    CAS  PubMed  Article  Google Scholar 

  62. Steffens F, Zhou X-B, Sausbier U, et al.. Melatonin receptor signalling in pregnant and nonpregnant rat uterine myocytes as probed by BKCa channel activity. Mol Endocrinol. 2003;17(10):2103–2115.

    CAS  PubMed  Article  Google Scholar 

  63. Martensson LG, Andersson RG, Berg G. Melatonin together with noradrenaline augments contractions of human myometrium. Eur J Pharmacol. 1996;316(2–3):273–275.

    CAS  PubMed  Article  Google Scholar 

  64. Schlabritz-Loutsevitch N, Hellner N, Middendorf R, Muller D, Olcese J. The human myometrium as a target for melatonin. J Clin Endocrinol Metab. 2003;88(2):908–913.

    CAS  PubMed  Article  Google Scholar 

  65. Sharkey J, Cable C, Olcese J. Melatonin sensitizes human myometrial cells to oxytocin in a PKCα/ERK-dependent manner. J Clin Endocrinol Metab. 2010;95(6):2902–2908.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980;210(4475):1267–1269.

    CAS  PubMed  Article  Google Scholar 

  67. West KE, Jablonski MR, Warfield B, et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol. 2010;110(3):619–626.

    PubMed  Article  Google Scholar 

  68. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514–550.

    CAS  PubMed  Google Scholar 

  69. Horard B, Rayet B, Triqueneaux G, Laudet V, Delaunay F, Vanacker J-M. Expression of the orphan nuclear receptor ERRα is under circadian regulation in estrogen-responsive tissues. J Mol Endocrinol. 2004;33(1):87–97.

    CAS  PubMed  Article  Google Scholar 

  70. Dolatshad H, Davis FC, Johnson MH. Circadian clock genes in reproductive tissues and the developing conceptus. Repro Fertil Dev. 2009;21(1):1–9.

    CAS  Article  Google Scholar 

  71. Ratajczak CJ, Herzog ED, Muglia LJ. Clock gene expression in gravid uterus and extra-embryonic tissues during late gestation in the mouse. Reprod Fertil Dev. 2010;22(5):743–750.

    CAS  PubMed  Article  Google Scholar 

  72. Young RC. Myocytes, myometrium and uterine contractions. Ann NY Acad Sci 2007; 1101: 72–84.

    CAS  PubMed  Article  Google Scholar 

  73. Sparey C, Robson SC, Bailey J, Lyall F, Europe-Finner GN. The differential expression of myometrial connexin-43, cyclooxygenase-1 and -2, and Gsa proteins in the upper and lower segments of the human uterus during pregnancy and labor. J Clin Endocrinol Metab. 1999;84(5):1705–1710.

    CAS  PubMed  Google Scholar 

  74. Kivela A. Serum melatonin during human pregnancy. Acta Endocrinol. 1991;124(3):233–237.

    CAS  Article  Google Scholar 

  75. Wierrani F, Grin W, Hlawaka B, Kroiss A, Gruenberger W. Elevated serum melatonin levels during human late pregnancy and labour. J Obstet Gynecol 1997;17(5):449–451.

    CAS  Article  Google Scholar 

  76. Gravett MG, Rubens CE, Nunes TM. Global report on preterm birth and stillbirth (2 of 7): discovery science. BMC Pregnancy Childbirth. 2010;10(suppl 1):S2.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Olcese PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olcese, J., Lozier, S. & Paradise, C. Melatonin and the Circadian Timing of Human Parturition. Reprod. Sci. 20, 168–174 (2013). https://doi.org/10.1177/1933719112442244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112442244

Keywords

  • parturition
  • circadian
  • melatonin
  • oxytocin
  • myometrium