Skip to main content

Advertisement

Log in

Immune Response Gene Profiles in the Term Placenta Depend Upon Maternal Muscle Mass

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal thinness leads to metabolic challenges in the offspring, but it is unclear whether reduced maternal fat mass or muscle mass drives these metabolic changes. Recently, it has been shown that low maternal muscle mass—as measured by arm muscle area (AMA)—is associated with depressed nutrient transport to the fetus. To determine the role of maternal muscle mass on placental function, we analyzed the gene expression profiles of 30 human placentas over the range of AMA (25.2-90.8 cm2) from uncomplicated term pregnancies from the Southampton Women’s Survey cohort. Eighteen percent of the ∼60 genes that were highly expressed in less muscular women were related to immune system processes and the interferon-γ (IFNG) signaling pathway in particular. Those transcripts related to the IFNG pathway included IRF1, IFI27, IFI30, and GBP6. Placentas from women with low muscularity are, perhaps, more sensitive to the effects of inflammatory cytokines than those from more muscular women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Size at birth, fat-free mass and resting metabolic rate in adult life. Horm Metab Res. 2002;34(2):72–76.

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJ, Hales CN, Fall CH, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993; 36(1):62–67.

    Article  PubMed  CAS  Google Scholar 

  3. Baker J, Workman M, Bedrick E, Frey MA, Hurtado M, Pearson O. Brains versus brawn: an empirical test of Barker’s brain sparing model. Am J Hum Biol. 2010;22(2):206–215.

    PubMed  Google Scholar 

  4. Jansson N, Pettersson J, Haafiz A, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576(Pt 3):935–946.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Shiell AW, Campbell DM, Hall MH, Barker DJ. Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. BJOG. 2000;107(7):890–895.

    Article  PubMed  CAS  Google Scholar 

  6. Mi J, Law C, Zhang KL, Osmond C, Stein C, Barker D. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med. 2000;132(4):253–260.

    Article  PubMed  CAS  Google Scholar 

  7. Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29(3):274–281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23(1):271–278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Roberts VH, Smith J, McLea SA, Heizer AB, Richardson JL, Myatt L. Effect of increasing maternal body mass index on oxidative and nitrative stress in the human placenta. Placenta. 2009; 30(2):169–175.

    Article  PubMed  CAS  Google Scholar 

  10. Stewart FM, Freeman DJ, Ramsay JE, Greer IA, Caslake M, Ferrell WR. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers. J Clin Endocrinol Metab. 2007;92(3):969–975.

    Article  PubMed  CAS  Google Scholar 

  11. Lewis RM, Greenwood SL, Cleal JK, et al. Maternal muscle mass may influence system A activity in human placenta. Placenta. 2010;31(5):418–422.

    Article  PubMed  CAS  Google Scholar 

  12. Inskip HM, Godfrey KM, Robinson SM, et al. Cohort profile: The Southampton Women’s Survey. Int J Epidemiol. 2006;35(1): 42–48.

    Article  PubMed  Google Scholar 

  13. Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982; 36(4):680–690.

    Article  PubMed  CAS  Google Scholar 

  14. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300.

    Google Scholar 

  15. Beissbarth T, Speed TP. GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics. 2004; 20(9):1464–1465.

    Article  PubMed  CAS  Google Scholar 

  16. Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003;19(3):368–375.

    Article  PubMed  CAS  Google Scholar 

  17. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–e296.

    Article  PubMed  Google Scholar 

  18. Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009;32(6):1076–1080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52(12):2951-2958.

    Article  PubMed  CAS  Google Scholar 

  20. Sitras V, Paulssen RH, Gronaas H, et al. Differential placental gene expression in severe preeclampsia. Placenta. 2009;30(5): 424–433.

    Article  PubMed  CAS  Google Scholar 

  21. Mestan K, Yu Y, Matoba N, et al. Placental inflammatory response is associated with poor neonatal growth: preterm birth cohort study. Pediatrics. 2010;125(4):e891–e898.

    Article  PubMed  Google Scholar 

  22. Salafia CM, Ernst LM, Pezzullo JC, Wolf EJ, Rosenkrantz TS, Vintzileos AM. The very low birthweight infant: maternal complications leading to preterm birth, placental lesions, and intrauterine growth. Am J Perinatol. 1995;12(2):106–110.

    Article  PubMed  CAS  Google Scholar 

  23. Tayade C, Fang Y, Croy BA. A review of gene expression in porcine endometrial lymphocytes, endothelium and trophoblast during pregnancy success and failure. J Reprod Dev. 2007;53(3):455–463.

    Article  CAS  PubMed  Google Scholar 

  24. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod. 2009; 80(5):848–859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Roberts KA, Riley SC, Reynolds RM, et al. Placental structure and inflammation in pregnancies associated with obesity. Placenta. 2011;32(3):247–254.

    Article  PubMed  CAS  Google Scholar 

  26. Ravelli AC, van der Meulen JH, Michels RP, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998; 351(9097):173–177.

    Article  PubMed  CAS  Google Scholar 

  27. Kroger A, Koster M, Schroeder K, et al. Activities of IRF-1. J Interferon Cytokine Res. 2002;22(1):5–14.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod Biol Endocrinol. 2004;2(5):52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mor G. Inflammation and pregnancy: the role of toll-like receptors in trophoblast-immune interaction. Ann N Y Acad Sci. 2008;1127(1):121–128.

    Article  CAS  Google Scholar 

  30. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature. 1998;391(6665):410–413.

    Article  PubMed  CAS  Google Scholar 

  31. Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434(7030):243–249.

    Article  PubMed  CAS  Google Scholar 

  32. Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231–238.

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen VT, Benveniste EN. Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. J Biol Chem. 2000;275(31): 23674–23684.

    Article  PubMed  CAS  Google Scholar 

  34. Nareika A, Sundararaj KP, Im YB, Game BA, Lopes-Virella MF, Huang Y. High glucose and interferon gamma synergistically stimulate MMP-1 expression in U937 macrophages by increasing transcription factor STAT1 activity. Atherosclerosis. 2009; 202(2):363–371.

    Article  PubMed  CAS  Google Scholar 

  35. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third national health and nutrition examination survey. J Clin Endocrinol Metab. 2011;96(9):2898–2903.

    Article  PubMed  CAS  Google Scholar 

  36. Roos S, Jansson N, Palmberg I, et al. Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. J Physiol. 2007; 582(pt 1):449–459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Roos S, Powell TL, Jansson T. Placental mTOR links maternal nutrient availability to fetal growth. Biochem Soc Trans. 2009; 37(pt 1):295–298.

    Article  PubMed  CAS  Google Scholar 

  38. Roos S, Kanai Y, Prasad PD, Powell TL, Jansson T. Regulation of placental amino acid transporter activity by mammalian target of rapamycin. Am J Physiol Cell Physiol. 2009;296(1): C142–C150.

    Article  PubMed  CAS  Google Scholar 

  39. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829–1834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009;47(4):344–356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122(4):369–382.

    Article  PubMed  CAS  Google Scholar 

  42. Lyall F, Gibson JL, Greer IA, Brockman DE, Eis AL, Myatt L. Increased nitrotyrosine in the diabetic placenta: evidence for oxidative stress. Diabetes Care. 1998;21(10):1753–1758.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent L. Thornburg PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Tierney, P.F., Lewis, R.M., McWeeney, S.K. et al. Immune Response Gene Profiles in the Term Placenta Depend Upon Maternal Muscle Mass. Reprod. Sci. 19, 1041–1056 (2012). https://doi.org/10.1177/1933719112440051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112440051

Keywords

Navigation