Skip to main content

Advertisement

Log in

Resveratrol Prevents Impairment in Activation of Retinoic Acid Receptors and MAP Kinases in the Embryos of a Rodent Model of Diabetic Embryopathy

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Diabetes induces impairments in gene expression during embryonic development that leads to premature and improper tissue specialization. Retinoic acid receptors (RARs and retinoid X receptor [RXRs]) and mitogen-activated protein kinases (MAPKs) play crucial roles during embryonic development, and their suppression or activation has been shown as a determinant of the fate of embryonic organogenesis. We studied the activation of RARs and MAPKs in embryonic day 12 (E12) in embryos of rats under normal, diabetic, and diabetic treated with resveratrol ([RSV]; 100 mg/kg body weight) conditions. We found downregulation of RARs and RXRs expressions as well as their DNA-binding activities in the embryos exhibiting developmental delays due to diabetes. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was decreased and phosphorylation of c-Jun N-terminal kinase (JNK) 1/2 and p38 was increased. Interestingly, embryos of diabetic rats treated with RSV showed normalized patterns of RARs, RXRs, neuronal markers, and ERK, JNK and p38 phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? Birth Defects Res A Clin Mol Teratol. 2010;88(10):779–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oyama K, Sugimura Y, Murase T, et al. Folic acid prevents congenital malformations in the offspring of diabetic mice. Endocr J. 2009;56(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Z, Reece EA. Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. J Soc Gynecol Investig. 2005;12(8):549–557.

    Article  PubMed  Google Scholar 

  4. Cleves MA, Hobbs CA. Collaborative strategies for unraveling the complexity of birth defects. J Matern Fetal Neonatal Med. 2004;15(1):35–38.

    Article  CAS  PubMed  Google Scholar 

  5. Wroblewska-Seniuk K, Wender-Ozegowska E, Szczapa J. Longterm effects of diabetes during pregnancy on the offspring. Pediatr Diabetes. 2009;10(7):432–440.

    Article  CAS  PubMed  Google Scholar 

  6. Dabelea D. The predisposition to obesity and diabetes in offspring of diabetic mothers. Diabetes Care. 2007;30(suppl 2):S169–S174.

    Article  PubMed  Google Scholar 

  7. Pavlinkova G, Salbaum JM, Kappen C. Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genomics. 2009;10:274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fu J, Tay SS, Ling EA, et al. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia. 2006;49(5):1027–1038.

    Article  CAS  PubMed  Google Scholar 

  9. Dheen ST, Tay SS, Boran J, et al. Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview. Curr Med Chem. 2009;16(18):2345–2354.

    Article  CAS  PubMed  Google Scholar 

  10. Simeoni U, Barker DJ. Offspring of diabetic pregnancy: longterm outcomes. Semin Fetal Neonatal Med. 2009;14(2):119–124.

    Article  PubMed  Google Scholar 

  11. Van Lieshout RJ, Voruganti LP. Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci. 2008;33(5):395–404.

    PubMed  PubMed Central  Google Scholar 

  12. Palha JA, Goodman AB. Thyroid hormones and retinoids: a possible link between genes and environment in schizophrenia. Brain Res Rev. 2006;51(1):61–71.

    Article  CAS  PubMed  Google Scholar 

  13. Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. Nucl Recept Signal. 2009;7:e002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wilson L, Gale E, Maden M. The role of retinoic acid in the morphogenesis of the neural tube. J Anat. 2003;203(4):357–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li N, Sun S, Wang D, et al. Suppression of retinoic acid receptors may contribute to embryonic skeleton hypoplasia in maternal rats with chronic vitamin A deficiency. J Nutr Biochem. 2010;21(8): 710–716.

    Article  CAS  PubMed  Google Scholar 

  16. Lenhard JM. PPAR gamma/RXR as a molecular target for diabetes. Receptors Channels. 2001;7(4):249–258.

    CAS  PubMed  Google Scholar 

  17. Yan J, Hales BF. p38 and c-Jun N-terminal kinase mitogen-activated protein kinase signaling pathways play distinct roles in the response of organogenesis-stage embryos to a teratogen. J Pharmacol Exp Ther. 2008;326(3):764–772.

    Article  CAS  PubMed  Google Scholar 

  18. Pan J, Kao YL, Joshi S, et al. Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Neurochem. 2005; 93(3):571–583.

    Article  CAS  PubMed  Google Scholar 

  19. Guleria RS, Pan J, Dipette D, et al. Hyperglycemia inhibits retinoic acid-induced activation of Rac1, prevents differentiation of cortical neurons, and causes oxidative stress in a rat model of diabetic pregnancy. Diabetes. 2006;55(12):3326–3334.

    Article  CAS  PubMed  Google Scholar 

  20. Pervaiz S, Holme AL. Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal. 2009;11(11):2851–2897.

    Article  CAS  PubMed  Google Scholar 

  21. Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011; 14(5):612–622.

    Article  CAS  PubMed  Google Scholar 

  22. Banerjee Mustafi S, Chakraborty PK, Raha S. Modulation of Akt and ERK1/2 pathways by resveratrol in chronic myelogenous leukemia (CML) cells results in the downregulation of Hsp70. PLoS One.5(1):e8719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kang MR, Lee SW, Um E, et al. Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells. Nucleic Acids Res. 2010;38(3):822–831.

    Article  CAS  PubMed  Google Scholar 

  24. Singh CK, Kumar A, Hitchcock DB, et al. Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol Nutr Food Res. 2011;55(8):1186–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar A, Singh CK, DiPette DD, et al. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2010;34(5):928–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dolle P. Developmental expression of retinoic acid receptors (RARs). Nucl Recept Signal. 2009;7:e006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Germain P, Chambon P, Eichele G, et al. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev. 2006;58(4):760–772.

    Article  PubMed  CAS  Google Scholar 

  28. Corson LB, Yamanaka Y, Lai KM, et al. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development. 2003;130(19):4527–4537.

    Article  CAS  PubMed  Google Scholar 

  29. Reece EA, Wu YK, Zhao Z, et al. Dietary vitamin and lipid therapy rescues aberrant signaling and apoptosis and prevents hyperglycemia-induced diabetic embryopathy in rats. Am J Obstet Gynecol. 2006;194(2):580–585.

    Article  CAS  PubMed  Google Scholar 

  30. Yang P, Zhao Z, Reece EA. Involvement of c-Jun N-terminal kinases activation in diabetic embryopathy. Biochem Biophys Res Commun. 2007;357(3):749–754.

    Article  CAS  PubMed  Google Scholar 

  31. Ates O, Cayli SR, Yucel N, et al. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci. 2007;14(3):256–260.

    Article  CAS  PubMed  Google Scholar 

  32. Palsamy P, Subramanian S. Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomed Pharmacother. 2008;62(9):598–605.

    Article  CAS  PubMed  Google Scholar 

  33. Kutuk O, Poli G, Basaga H. Resveratrol protects against 4-hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling. Toxicol Sci. 2006;90(1):120–132.

    Article  CAS  PubMed  Google Scholar 

  34. Williams LD, Burdock GA, Edwards JA, et al. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem Toxicol. 2009;47(9):2170–2182.

    Article  CAS  PubMed  Google Scholar 

  35. Jang JY, Park D, Shin S, et al. Antiteratogenic effect of resveratrol in mice exposed in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Eur J Pharmacol. 2008;591(1–3):280–283.

    Article  CAS  PubMed  Google Scholar 

  36. Singh NP, Singh US, Nagarkatti M, et al. Resveratrol (3,5,4′-tri-hydroxystilbene) protects pregnant mother and fetus from the immunotoxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Nutr Food Res. 2011;55(2):209–219.

    Article  CAS  PubMed  Google Scholar 

  37. El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008; 205(10):2409–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salbaum JM, Kappen C. Neural tube defect genes and maternal diabetes during pregnancy. Birth Defects Res A Clin Mol Teratol. 2010;88(8):601–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petersen MB, Pedersen SA, Greisen G, et al. Early growth delay in diabetic pregnancy: relation to psychomotor development at age 4. Br Med J (Clin Res Ed). 1988;296(6622): 598–600.

    Article  CAS  Google Scholar 

  40. Wilson GN, Howe M, Stover JM. Delayed developmental sequences in rodent diabetic embryopathy. Pediatr Res. 1985; 19(12):1337–1340.

    Article  CAS  PubMed  Google Scholar 

  41. Van Assche FA, Holemans K, Aerts L. Long-term consequences for offspring of diabetes during pregnancy. Br Med Bull. 2001;60: 173–182.

    Article  PubMed  Google Scholar 

  42. Chan BW, Chan KS, Koide T, et al. Maternal diabetes increases the risk of caudal regression caused by retinoic acid. Diabetes. 2002;51(9):2811–2816.

    Article  CAS  PubMed  Google Scholar 

  43. Chen WH, Morriss-Kay GM, Copp AJ. Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: involvement of retinoic acid and its nuclear receptors RAR-beta and RAR-gamma. Development. 1995;121(3): 681–691.

    CAS  PubMed  Google Scholar 

  44. Dolle P, Fraulob V, Kastner P, et al. Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev. 1994;45(2): 91–104.

    Article  CAS  PubMed  Google Scholar 

  45. Zetterstrom RH, Lindqvist E, Mata de Urquiza A, et al. Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci. 1999;11(2):407–416.

    Article  CAS  PubMed  Google Scholar 

  46. Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996; 271(40):24313–24316.

    Article  CAS  PubMed  Google Scholar 

  47. Rana A, Gallo K, Godowski P, et al. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem. 1996;271(32):19025–19028.

    Article  CAS  PubMed  Google Scholar 

  48. Sabapathy K, Jochum W, Hochedlinger K, et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev. 1999;89(1–2):115–124.

    Article  CAS  PubMed  Google Scholar 

  49. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  50. Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors. 2003;17(1–4):287–296.

    Article  CAS  PubMed  Google Scholar 

  51. Malemud CJ. Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways. Curr Opin Pharmacol. 2007; 7(3):339–343.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugra S. Singh PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C.K., Kumar, A., LaVoie, H.A. et al. Resveratrol Prevents Impairment in Activation of Retinoic Acid Receptors and MAP Kinases in the Embryos of a Rodent Model of Diabetic Embryopathy. Reprod. Sci. 19, 949–961 (2012). https://doi.org/10.1177/1933719112438972

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112438972

Keywords

Navigation