Skip to main content

Advertisement

Log in

Maternal Undernutrition Programs Offspring Adrenal Expression of Steroidogenic Enzymes

  • Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the influence of maternal undernutrition (MUN) on maternal and offspring adrenal steoridogenic enzymes. Pregnant Sprague-Dawley rats were 50% food-restricted from day 10 of gestation until delivery. Control animals received ad libitum food. Offspring were killed on day 1 of life (P1) and at 9 months. We determined the messenger RNA (mRNA) expression of steroidogneic enzymes by real-time reverse transcriptase polymerized chain reaction (RT-PCR). Maternal undernutrition inhibited maternal adrenal expression of P450 cholesterol side-chain cleavage enzyme (CYP11A1), 11 beta-hydroxylase (CYP11B1), aldosterone synthase (CYP11B2), and adrenocorticotropic hormone (ACTH) receptor (ACTH-R; MC2 gene) compared with control offspring. There was a marked downregulation in the expression of CYP11B1, CYP11B2, 11 β-hydroxysteroid dehydrogenase type 1 and 2 (HSD1 and HSD2), CYP11A1, ACTH receptor, steroidogenic acute regulatory protein (STAR), and mineralocorticoid receptor (MCR; NR3C2 gene) mRNA in P1 MUN offspring (both genders), with no changes in glucocorticoid receptor (GCR). Quantitative immunohistochemical analysis confirmed the PCR data for GCR and MCR in P1 offspring and demonstrated lower expression of leptin receptor protein (Ob-Ra/Ob-Rb) and mRNA in P1 MUN offspring. In 9-month adult male MUN offspring, the expression of HSD1, CYP11A1, CYP11B2, Ob-Ra/Ob-Rb, and GCR mRNA were significantly upregulated with a trend toward an increase in ACTH-R and a decrease in 17 alpha-hydroxylase (CYP17A1) expression. In adult female MUN offspring, similar to males, the expression of CYP11A1, ACTH-R, and Ob-Rb mRNA were increased, whereas GCR and CYP17A1 mRNA were decreased. These results indicate that the adrenal gland is a target of nutritional programming. In utero undernutrition has a global suppressive effect on maternal and P1 offspring adrenal steroidogenic enzymes in association with reduced circulating corticosterone levels in P1 offspring, which may be secondary to a negative feedback from elevated maternal GC levels and or leptin levels in MUN dams. Gender-specific differences in steroidogenic enzyme expression were found in adult MUN offspring. The common finding of increased ACTH receptor expression in MUN adults of both genders suggests an increased sensitivity of these offspring to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301(6746):259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav. 2011;59(3):279–289

    Article  CAS  PubMed  Google Scholar 

  3. Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dutriez-Casteloot I, Breton C, Coupe B, et al. Tissue-specific programming expression of glucocorticoid receptors and 11 beta-HSDs by maternal perinatal undernutrition in the HPA axis of adult male rats. Horm Metab Res. 2008;40(4):257–261

    Article  CAS  PubMed  Google Scholar 

  5. Vieau D, Sebaai N, Leonhardt M, et al. HPA axis programming by maternal undernutrition in the male rat offspring. Psychoneuroen-docrinology. 2007;32(suppl 1):S16–S20

    Article  CAS  Google Scholar 

  6. Liu L, Li A, Matthews SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab. 2001;280(5):E729–E739

    Article  CAS  PubMed  Google Scholar 

  7. Leonhardt M, Lesage J, Dufourny L, Dickes-Coopman A, Montel V, Dupouy JP. Perinatal maternal food restriction induces alterations in hypothalamo-pituitary-adrenal axis activity and in plasma corticosterone-binding globulin capacity of weaning rat pups. Neuroendocrinol. 2002;75(1):45–54

    Article  CAS  Google Scholar 

  8. Lesage J, Dufourny L, Laborie C, et al. Perinatal malnutrition programs sympathoadrenal and hypothalamic-pituitary-adrenal axis responsiveness to restraint stress in adult male rats. J Neuroendocrinol. 2002;14(2):135–143

    Article  CAS  PubMed  Google Scholar 

  9. Yang K, Challis JR. Fetal and adult sheep adrenal cortical cells contain glucocorticoid receptors. Biochem Biophys Res Commun. 1989;162(2):604–611

    Article  CAS  PubMed  Google Scholar 

  10. Darbeida H, Naaman E, Durand P. Glucocorticoid induction of the maturation of ovine fetal adrenocortical cells. Biochem Biophys Res Commun. 1987;145(3):999–1005

    Article  CAS  PubMed  Google Scholar 

  11. Picard-Hagen N, Darbeida H, Durand P. Glucocorticoids enhance the cholesterol side-chain cleavage activity of ovine adrenocortical mitochondria. J Steroid Biochem Mol Biol. 1995;55(1):57–65

    Article  CAS  PubMed  Google Scholar 

  12. Root B, Abrassart J, Myers DA, Monau T, Ducsay CA. Expression and distribution of glucocorticoid receptors in the ovine fetal adrenal cortex: effect of long-term hypoxia. Reprod Sci. 2008;15(5):517–528

    Article  CAS  PubMed  Google Scholar 

  13. Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;15(6):321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xing Y, Parker CR, Edwards M, Rainey WE. ACTH is a potent regulator of gene expression in human adrenal cells. J Mol Endocrinol. 2010;45(1):59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mountjoy KG, Bird IM, Rainey WE, Cone RD. ACTH induces up-regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines. Mol Cell Endocrinol. 1994;99(1):R17–R20

    Article  CAS  PubMed  Google Scholar 

  16. Edwards LJ, McMillen IC. Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo-pituitary adrenal axis in sheep during late gestation. Biol Reprod. 2002;66(5):1562–1569

    Article  CAS  PubMed  Google Scholar 

  17. Edwards LJ, Bryce AE, Coulter CL, McMillen IC. Maternal undernutrition throughout pregnancy increases adrenocorticotrophin receptor and steroidogenic acute regulatory protein gene expression in the adrenal gland of twin fetal sheep during late gestation. Mol Cell Endocrinol. 2002;196(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  18. Waddell BJ, Bollen M, Wyrwoll CS, Mori TA, Mark PJ. Developmental programming of adult adrenal structure and steroidogenesis: effects of fetal glucocorticoid excess and postnatal dietary omega-3 fatty acids. J Endocrinol. 2010;205(2):171–178

    Article  CAS  PubMed  Google Scholar 

  19. Molendi-Coste O, Grumolato L, Laborie C, et al. Maternal perinatal undernutrition alters neuronal and neuroendocrine differentiation in the rat adrenal medulla at weaning. Endocrinology. 2006;147(6):3050–3059

    Article  CAS  PubMed  Google Scholar 

  20. Walker CD, Salzmann C, Long H, Otis M, Roberge C, Gallo-Payet N. Direct inhibitory effects of leptin on the neonatal adrenal and potential consequences for brain glucocorticoid feedback. Endocr Res. 2004;30(4):837–844

    Article  CAS  PubMed  Google Scholar 

  21. Hsu HT, Chang YC, Chiu YN, Liu CL, Chang KJ, Guo IC. Leptin interferes with adrenocorticotropin/3’,5’-cyclic adenosine monophosphate (cAMP) signaling, possibly through a Janus kinase 2-phosphatidylinositol 3-kinase/Akt-phosphodiesterase 3-cAMP pathway, to down-regulate cholesterol side-chain cleavage cytochrome P450 enzyme in human adrenocortical NCI-H295 cell line. J Clin Endocrinol Metab. 2006;91(7):2761–2769

    Article  CAS  PubMed  Google Scholar 

  22. Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R91–R96

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  24. Khorram O, Momeni M, Desai M, Ross MG. Nutrient restriction in utero induces remodeling of the vascular extracellular matrix in rat offspring. Reprod Sci. 2007;14(1):73–80

    Article  CAS  PubMed  Google Scholar 

  25. Khorram O, Khorram N, Momeni M, et al. Maternal undernutrition inhibits angiogenesis in the offspring: a potential mechanism of programmed hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R745–R753

    Article  CAS  PubMed  Google Scholar 

  26. Woods LL, Weeks DA. Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R955–R962

    Article  CAS  PubMed  Google Scholar 

  27. Langley-Evans SC, Phillips GJ, Benediktsson R, et al. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 1996;17(2–3):169–172

    Article  CAS  PubMed  Google Scholar 

  28. Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology. 2001;142(5):1692–1702

    Article  CAS  PubMed  Google Scholar 

  29. Seckl JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol. 2004;151(suppl 3):U49–U62

    Article  CAS  PubMed  Google Scholar 

  30. Seckl JR. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol. 2004;4(6):597–602

    Article  CAS  PubMed  Google Scholar 

  31. Gardner DS, Jackson AA, Langley-Evans SC. Maintenance of maternal diet-induced hypertension in the rat is dependent on glucocorticoids. Hypertension. 1997;30(6):1525–1530

    Article  CAS  PubMed  Google Scholar 

  32. Langley-Evans SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J Hypertens. 1997;15(5):537–544

    Article  CAS  PubMed  Google Scholar 

  33. Loose DS, Do YS, Chen TL, Feldman D. Demonstration of glucocorticoid receptors in the adrenal cortex: evidence for a direct dexamethasone suppressive effect on the rat adrenal gland. Endocrinology. 1980;107(1):137–146

    Article  CAS  PubMed  Google Scholar 

  34. Gessi S, Merighi S, Borea PA. Glucocorticoid’s pharmacology: past, present and future. Curr Pharm Des. 2010;16(32):3540–3553

    Article  CAS  PubMed  Google Scholar 

  35. Jacobson L. Hypothalamic-pituitary-adrenocortical axis regulation. Endocrinol Metab Clin North Am. 2005;34(2):271–292, vii

    Article  CAS  PubMed  Google Scholar 

  36. Kalinyak JE, Bradshaw JG, Perlman AJ. The role of development and adrenal steroids in the regulation of the mineralocorticoid receptor messenger RNA. Horm Metab Res. 1992;24(3):106–109

    Article  CAS  PubMed  Google Scholar 

  37. Patchev VK, Hayashi S, Orikasa C, Almeida OF. Ontogeny of gender-specific responsiveness to stress and glucocorticoids in the rat and its determination by the neonatal gonadal steroid environment. Stress. 1999;3(1):41–54

    Article  CAS  PubMed  Google Scholar 

  38. Kalinyak JE, Griffin CA, Hamilton RW, Bradshaw JG, Perlman AJ, Hoffman AR. Developmental and hormonal regulation of glucocorticoid receptor messenger RNA in the rat. J Clin Invest. 1989;84(6):1843–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bahr V, Pfeiffer AF, Diederich S. The metabolic syndrome X and peripheral cortisol synthesis. Exp Clin Endocrinol Diabetes. 2002;110(7):313–318

    Article  CAS  PubMed  Google Scholar 

  40. Bibeau K, Battista MC, Houde V, Brochu M. Fetal adrenal gland alterations in a rat model of adverse intrauterine environment. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R899–R911

    Article  CAS  PubMed  Google Scholar 

  41. Myers DA, Hyatt K, Mlynarczyk M, Bird IM, Ducsay CA. Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1707–R1714

    Article  CAS  PubMed  Google Scholar 

  42. Langley-Evans SC, Gardner DS, Jackson AA. Maternal protein restriction influences the programming of the rat hypothalamic-pituitary-adrenal axis. J Nutr. 1996;126(6):1578–1585

    Article  CAS  PubMed  Google Scholar 

  43. Coulter CL, McMillen IC, Bird IM, Salkeld MD. Steroidogenic acute regulatory protein expression is decreased in the adrenal gland of the growth-restricted sheep fetus during late gestation. Biol Reprod. 2002;67(2):584–590

    Article  CAS  PubMed  Google Scholar 

  44. Bloomfield FH, Oliver MH, Giannoulias CD, Gluckman PD, Harding JE, Challis JR. Brief undernutrition in late-gestation sheep programs the hypothalamic-pituitary-adrenal axis in adult offspring. Endocrinology. 2003;144(7):2933–2940

    Article  CAS  PubMed  Google Scholar 

  45. Konishi N, Otaka M, Odashima M, et al. Systemic stress increases serum leptin level. J Gastroenterol Hepatol. 2006;21(7):1099–1102

    Article  CAS  PubMed  Google Scholar 

  46. Jelks A, Belkacemi L, Han G, Chong WL, Ross MG, Desai M. Paradoxical increase in maternal plasma leptin levels in food-restricted gestation: contribution by placental and adipose tissue. Reprod Sci. 2009;16(7):665–675

    Article  CAS  PubMed  Google Scholar 

  47. Kruse M, Bornstein SR, Uhlmann K, Paeth G, Scherbaum WA. Leptin down-regulates the steroid producing system in the adrenal. Endocr Res. 1998;24(3–4):587–590

    Article  CAS  PubMed  Google Scholar 

  48. Cherradi N, Capponi AM, Gaillard RC, Pralong FP. Decreased expression of steroidogenic acute regulatory protein: a novel mechanism participating in the leptin-induced inhibition of glucocorticoid biosynthesis. Endocrinology. 2001;142(8):3302–3308

    Article  CAS  PubMed  Google Scholar 

  49. Proulx K, Clavel S, Nault G, Richard D, Walker CD. High neonatal leptin exposure enhances brain GR expression and feedback efficacy on the adrenocortical axis of developing rats. Endocrinology. 2001;142(11):4607–4616

    Article  CAS  PubMed  Google Scholar 

  50. Gardner DS, Van Bon BW, Dandrea J, et al. Effect of periconceptional undernutrition and gender on hypothalamic-pituitary-adrenal axis function in young adult sheep. J Endocrinol. 2006;190(2):203–212

    Article  CAS  PubMed  Google Scholar 

  51. Lavoie HA, King SR. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood). 2009;234(8):880–907

    Article  CAS  Google Scholar 

  52. Riviere G, Michaud A, Breton C, et al. Angiotensin-converting enzyme 2 (ACE2) and ACE activities display tissue-specific sensitivity to undernutrition-programmed hypertension in the adult rat. Hypertension. 2005;46(5):1169–1174

    Article  CAS  PubMed  Google Scholar 

  53. Bogdarina I, Haase A, Langley-Evans S, Clark AJ. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS ONE. 2010;5(2):e9237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shimojo M, Whorwood CB, Stewart PM. 11 beta-Hydroxysteroid dehydrogenase in the rat adrenal. J Mol Endocrinol. 1996;17(2):121–130

    Article  CAS  PubMed  Google Scholar 

  55. Ojeda NB, Grigore D, Robertson EB, Alexander BT. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring. Hypertension. 2007;50(4):679–685

    Article  CAS  PubMed  Google Scholar 

  56. Roghair RD, Segar JL, Volk KA, et al. Vascular nitric oxide and superoxide anion contribute to sex-specific programmed cardiovascular physiology in mice. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R651–R662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clark PM, Hindmarsh PC, Shiell AW, Law CM, Honour JW, Barker DJ. Size at birth and adrenocortical function in childhood. Clin Endocrinol (Oxf). 1996;45(6):721–726

    Article  CAS  Google Scholar 

  58. Phillips DI, Barker DJ, Fall CH, et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab. 1998;83(3):757–760

    CAS  PubMed  Google Scholar 

  59. Reynolds RM, Walker BR, Syddall HE, et al. Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab. 2001;86(1):245–250

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Khorram MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorram, N.M., Magee, T.R., Wang, C. et al. Maternal Undernutrition Programs Offspring Adrenal Expression of Steroidogenic Enzymes. Reprod. Sci. 18, 931–940 (2011). https://doi.org/10.1177/1933719111404613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111404613

Keywords

Navigation