Skip to main content
Log in

Gene Expression Profile of Rat Prostate During Pubertal Growth and Maturation

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Temporal gene expression profiling can provide valuable insight into mechanisms of differentiation and may be helpful in laying a foundation for characterization of the molecular aspects of development. Prostate development begins in fetal life and is complete at sexual maturity, and androgen stimulation is both necessary and sufficient for development and maturity of the prostate. In this study, we investigated gene expression profiles of rat prostate at 3 different developmental stages (2 weeks, 3.5 weeks, and 8 weeks), when serum testosterone levels are low, intermediate, and high. Through this analysis, we attempted to narrow down genes whose expression is affected by androgen increase during pubertal growth and maturation of the prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lau KM, Tam NN, Thompson C, Cheng RY, Leung YK, Ho SM. Age-associated changes in histology and gene-expression profile in the rat ventral prostate. Lab Invest. 2003;83(5):743–757.

    Article  CAS  Google Scholar 

  2. Takeshi K, Roanna TM, Alea AM, Gerald RC. Role of p63 and basal cells in the prostate. Differentiation. 2004;131(20):4955–4964.

    Google Scholar 

  3. Timms BG. Prostate development: a histological perspective. Differentiation. 2008;76(6):565–577.

    Article  CAS  Google Scholar 

  4. Cook C, Vezina CM, Allgeier SH, et al. Noggin is required for normal lobe pattering and ductal budding in the mouse prostate. Dev Biol. 2007;312(1):217–230.

    Article  CAS  Google Scholar 

  5. Sugimura Y, Cunha GR, Donjacour AA. Morphogenesis of ductal networks in the mouse prostate. Biol Reprod. 1986;34(5):961–971.

    Article  CAS  Google Scholar 

  6. Huang L, Pu Y, Hu WY, et al. The role of Wnt5a in prostate gland development. Dev Biol. 2009;328(2):188–199.

    Article  CAS  Google Scholar 

  7. Hayward SW, Cunha GR. The prostate: development and physiology. Radiol Clin North Am. 2000;38(1):1–14.

    Article  CAS  Google Scholar 

  8. Prins GS, Birch L. The developmental pattern of androgen receptor expression in rat prostate lobes is altered after neonatal exposure to estrogen. Endocrinology. 1995;136(3):1303–1314.

    Article  CAS  Google Scholar 

  9. Pritchard CC, Nelson PS. Gene expression profiling in the developing prostate. Differentiation. 2008;76(6):624–640.

    Article  CAS  Google Scholar 

  10. Prins GS, Birch L, Greene GL. Androgen receptor localization in different cell types of the adult rat prostate. Endocrinology. 1991;129(6):3187–3199.

    Article  CAS  Google Scholar 

  11. Chatterjee B. The role of the androgen receptor in the development of prostatic hyperplasia and prostate. Mol Cell Biochem. 2003;253(1–2):89–101.

    Article  CAS  Google Scholar 

  12. Banerjee PP, Banerjee S, Brown TR. Increased androgen receptor expression correlates with development of aged-dependent, lobe-specific spontaneous hyperplasia of the brown Norway rat prostate. Endocrionology. 2001;142(9):4066–4075.

    Article  CAS  Google Scholar 

  13. Waltregny D, Leav I, Signoretti S, et al. Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrionol. 2001;15(5):765–782.

    Article  CAS  Google Scholar 

  14. Jeong BC, Honh CY, Chattopadhyay S, et al. Androgen receptor corepressor-19kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol Endocrionol. 2004;18(1):13–25.

    Article  CAS  Google Scholar 

  15. Gong EY, Park E, Lee HJ, Lee K. Expression of Atp8b3 in murine testis and its characterization as a testis specific P-Type ATPase. Reproduction. 2009;137(2):345–351.

    Article  CAS  Google Scholar 

  16. Yoon CH, Miah MA, Kim KP, Bae YS. New Cdc2 Tyr 4 phosphorylation by daRNA-activated protein kinase triggers Cdc2 polyubiquitination and G2 arrest under genotoxic stresses. EMBO Rep. 2010;11(5):393–399.

    Article  CAS  Google Scholar 

  17. Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem. 2006;281(11):7118–7128.

    Article  CAS  Google Scholar 

  18. Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation. 2008;76(6):641–659.

    Article  CAS  Google Scholar 

  19. O’Connor DS, Grossman D, Plescia J, et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A. 2000;97(24):12103–13107.

    Google Scholar 

  20. Ryu MS, Lee MS, Hong JW, et al. TIS21/BTG/PC3 is expressed through PKC-delta pathway and inhibits binding of cyclin B1-Cdc2 and its activity, independent of p53 expression. Exp Cell Res. 2004;299:159–170.

    Article  CAS  Google Scholar 

  21. Han SJ, Conti M. New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate. Cell Cycle. 2006;5(3):227–231.

    Article  CAS  Google Scholar 

  22. Bhattacharya R, Cabral F. A ubiquitous β-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell. 2004;15(7):3123–3131.

    Article  CAS  Google Scholar 

  23. Baik MG, Lee MJ, Choi YJ. Gene expression during involution of mammary gland. Int J Mol Med. 1998;2(1):39–44.

    CAS  PubMed  Google Scholar 

  24. Leng L, Metz CN, Fang Y, et al. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197(11):1467–1476.

    Article  CAS  Google Scholar 

  25. Marsh LM, Cakarova L, Kwapiszewska G, et al. Surface expression of CD74 by type II alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):L442–L452.

    Article  CAS  Google Scholar 

  26. Xavier F, Allard S. Anti-Mullerian hormone, beta-catenin and Mullerian duct repression. Mol Cell Endocrinol. 2003;211(1):115–121.

    Article  CAS  Google Scholar 

  27. Wang Q, Li N, Wang X, et al. Membrane protein hMYADM preferentially expressed in myeloid cells is up-regulated during differentiation of stem cells and myeloid leukemia cells. Life Sci. 2007;80(5):420–429.

    Article  CAS  Google Scholar 

  28. Mima S, Ushijima H, Hwang HJ, et al. Identification of the TPO1 gene in yeast, and its human othologue TETRAN, which cause resistance to NSAIDs. FEBS Lett. 2007;581(7):1457–1463.

    Article  CAS  Google Scholar 

  29. Bain J. Andropause. Testosterone replacement therapy for aging men. Can Fam Physician. 2001;47:91–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cyriac J, Haleem R, Cai X, Wang Z. Androgen regulation of spermidine synthase expression in the rat prostate. Prostate. 2002;50(4):252–261.

    Article  CAS  Google Scholar 

  31. Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. Nucl Recept Signal. 2008;6:e001.

    Article  Google Scholar 

  32. Jiang F, Wang Z. Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid and microarray. Endocrinology. 2003;144(4):1257–1265.

    Article  CAS  Google Scholar 

  33. Nalbandian A, Pang AL, Rennert OM, Chan WY, Ravindranath N, Djakiew D. A novel function of differentiation revealed by cDNA microarray profiling of p75NTR-regulated gene expression. Differentiation. 2005;73(8):385–396.

    Article  CAS  Google Scholar 

  34. Lam YW, Tam NN, Evans JE, Green KM, Zhang X, Ho SM. Differential proteomics in the aging Noble rat ventral prostate. Proteomics. 2008;8(13):2750–2763.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keesook Lee PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, EY., Park, E., Chattopadhyay, S. et al. Gene Expression Profile of Rat Prostate During Pubertal Growth and Maturation. Reprod. Sci. 18, 426–434 (2011). https://doi.org/10.1177/1933719110391275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110391275

Keywords

Navigation