Skip to main content
Log in

A Large Network of Interconnected Signaling Pathways in Human Ovarian Follicles is Supported by the Gene Expression Activity of the Granulosa Cells

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Human follicular fluid (hFF), as an extra oocyte microenvironment, is essential to the biological processes of oocyte development. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 426 proteins as consistently present in hFF from different participants. According to our gene chip data, the granulosa cells in the follicle locally produce 235 of these proteins. These data suggest that the granulosa cells actively participate in the follicular development by synthesizing important molecules to support the activity of pathways that are essential to oocyte development and genomic preservation. The computational Ingenuity Pathway Analysis (IPA) suggests that the identified proteins have well-established functions in the pathways of steroidogenesis, cell-to-cell signaling and interaction, molecular transport, the antioxidative system, interleukin 1 (IL-1) and IL-6 signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, and the interconnective insulin-like growth factor and lipid metabolism networks. The hFF peptide composition is likely to serve not only the inflammatory follicular state as has been previously suggested; rather, it is a highly diverse and multifunctional environment with several interconnected pathways. These results provide us with important knowledge related to the environment in which the oocyte develops as well as the molecular basis for controlling the process independently of blood supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolialexi A, Mavrou A, Spyrou G, Tsangaris GT. Mass spectrometry-based proteomics in reproductive medicine. Mass Spectrom Rev. 2008;27(6):624–634.

    Article  Google Scholar 

  2. Schweigert FJ, Gericke B, Wolfram W, Kaisers U, Dudenhausen JW. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Hum Reprod. 2006;21(11):2960–2968.

    Article  CAS  Google Scholar 

  3. Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50:225–232.

    Article  CAS  Google Scholar 

  4. Angelucci S, Ciavardelli D, Di Giuseppe F, et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta. 2006;1764(11):1775–1785.

    Article  CAS  Google Scholar 

  5. Hanrieder J, Nyakas A, Naessen T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J Proteome Res. 2008;7(1):443–449.

    Article  CAS  Google Scholar 

  6. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev. 1994;15:725–751.

    Article  CAS  Google Scholar 

  7. Tsafriri A, Reich R. Molecular aspects of mammalian ovulation. Exp Clin Endocrinol Diabetes. 1999;107(1):1–11.

    Article  CAS  Google Scholar 

  8. Anahory T, Dechaud H, Bennes R, Marin P, Lamb NJ, Laoudj D. Identification of new proteins in follicular fluid of mature human follicles. Electrophoresis. 2002;23(7–8):1197–1202.

    Article  CAS  Google Scholar 

  9. Assou S, Anahory T, Pantesco V, et al. The human cumulus-oocyte complex gene-expression profile. Hum Reprod. 2006;21(7):1705–1719.

    Article  CAS  Google Scholar 

  10. Von Wald T, Monisova Y, Hacker MR, et al. Age-related variations in follicular apolipoproteins may influence human oocyte maturation and fertility potential. Fertil Steril. 2010;93(7):2354–2361.

    Article  Google Scholar 

  11. Smith LP, Nierstenhoefer M, Yoo SW, Penzias AS, Tobiasch E, Usheva A. The bile acid synthesis pathway is present and functional in the human ovary. PLoS One. 2009;4(10):e7333.

    Article  Google Scholar 

  12. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod. 2003;18(11):2270–2274.

    Article  CAS  Google Scholar 

  13. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 1991;286(1–2):152–154.

    Article  CAS  Google Scholar 

  14. Oda MN, Bielicki JK, Berger T, Forte TM. Cysteine substitutions in apolipoprotein A-I primary structure modulate paraoxonase activity. Biochemistry. 2001;40(6):1710–1718.

    Article  CAS  Google Scholar 

  15. Aleporou-Marinou V, Pappa H, Yalouris P, Patargias T. Purification of apolipoprotein H (beta 2-glycoprotein I)-like protein from human follicular fluid. Comp Biochem Physiol B Biochem Mol Biol. 2001;128(3):537–542.

    Article  CAS  Google Scholar 

  16. Estes SJ, Ye B, Qiu W, Cramer D, Hornstein MD, Missmer SA. A proteomic analysis of IVF follicular fluid in women <or=32 years old. Fertil Steril. 2009;92(5):1569–1578.

    Article  CAS  Google Scholar 

  17. Trougakos IP, Lourda M, Antonelou MH, et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res. 2009;15(1):48–59.

    Article  CAS  Google Scholar 

  18. Schwarz M, Spath L, Lux CA, et al. Potential protective role of apoprotein J (clusterin) in atherogenesis: binding to enzymatically modified low-density lipoprotein reduces fatty acid-mediated cytotoxicity. Thromb Haemost. 2008;100(1):110–118.

    CAS  PubMed  Google Scholar 

  19. Song H, Saito K, Fujigaki S, et al. IL-1 beta and TNF-alpha suppress apolipoprotein (apo) E secretion and apo A-I expression in HepG2 cells. Cytokine. 1998;10(4):275–280.

    Article  CAS  Google Scholar 

  20. Zhou J, Bondy C. Anatomy of the human ovarian insulin-like growth factor system. Biol Reprod. 1993;48(3):467–482.

    Article  CAS  Google Scholar 

  21. Giudice LC, van Dessel HJ, Cataldo NA, Chandrasekher YA, Yap OW, Fauser BC. Circulating and ovarian IGF binding proteins: potential roles in normo-ovulatory cycles and in polycystic ovarian syndrome. Prog Growth Factor Res. 1995;6(2–4):397–408.

    Article  CAS  Google Scholar 

  22. Wang TH, Chang CL, Wu HM, Chiu YM, Chen CK, Wang HS. Insulin-like growth factor-II (IGF-II), IGF-binding protein-3 (IGFBP-3), and IGFBP-4 in follicular fluid are associated with oocyte maturation and embryo development. Fertil Steril. 2006;86(5):1392–1401.

    Article  CAS  Google Scholar 

  23. Richardson DR. More roles for selenoprotein P: local selenium storage and recycling protein in the brain. Biochem J. 2005;386:e5–e7.

    Article  CAS  Google Scholar 

  24. Das S, Chattopadhyay R, Ghosh S, et al. Reactive oxygen species level in follicular fluid—embryo quality marker in IVF?. Hum Reprod. 2006;21(9):2403–2407.

    Article  CAS  Google Scholar 

  25. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–332.

    Article  Google Scholar 

  26. Freeman MW, Moore KJ. eLiXiRs for restraining inflammation. Nat Med. 2003;9(2):168–169.

    Article  CAS  Google Scholar 

  27. Mohan M, Thirumalapura NR, Malayer J. Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid. Reprod Biol Endocrinol. 2003;1:104.

    Article  Google Scholar 

  28. Drouineaud V, Sagot P, Garrido C, et al. Inhibition of progesterone production in human luteinized granulosa cells treated with LXR agonists. Mol Hum Reprod. 2007;13(6):373–379.

    Article  CAS  Google Scholar 

  29. Malizia BA, Wook YS, Penzias AS, Usheva A. The human ovarian follicular fluid level of interleukin-8 is associated with follicular size and patient age. Fertil Steril. 2010;93(2):537–543.

    Article  CAS  Google Scholar 

  30. Gerard N, Caillaud M, Martoriati A, Goudet G, Lalmanach AC. The interleukin-1 system and female reproduction. J Endocrinol. 2004;180(2):203–212.

    Article  CAS  Google Scholar 

  31. Caillaud M, Duchamp G, Gerard N. In vivo effect of interleukin-1beta and interleukin-1RA on oocyte cytoplasmic maturation, ovulation, and early embryonic development in the mare. Reprod Biol Endocrinol. 2005;3:26.

    Article  Google Scholar 

  32. Maeda A, Inoue N, Matsuda-Minehata F, Goto Y, Cheng Y, Manabe N. The role of interleukin-6 in the regulation of granulosa cell apoptosis during follicular atresia in pig ovaries. J Reprod Dev. 2007;53(3):481–490.

    Article  CAS  Google Scholar 

  33. Kawasaki F, Kawano Y, Kosay Hasan Z, Narahara H, Miyakawa I. The clinical role of interleukin-6 and interleukin-6 soluble receptor in human follicular fluids. Clin Exp Med. 2003;3(1):27–31.

    Article  CAS  Google Scholar 

  34. Salmassi A, Lu S, Hedderich J, Oettinghaus C, Jonat W, Mettler L. Interaction of interleukin-6 on human granulosa cell steroid secretion. J Endocrinol. 2001;170(2):471–478.

    Article  CAS  Google Scholar 

  35. Salonen EM, Vartio T, Hedman K, Vaheri A. Binding of fibronectin by the acute phase reactant C-reactive protein. J Biol Chem. 1984;259(3):1496–1501.

    CAS  PubMed  Google Scholar 

  36. Silva JM, Price CA. Insulin and IGF-I are necessary for FSH-induced cytochrome P450 aromatase but not cytochrome P450 side-chain cleavage gene expression in oestrogenic bovine granulosa cells in vitro. J Endocrinol. 2002;174(3):499–507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anny Usheva PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, S.W., Savchev, S., Sergott, L. et al. A Large Network of Interconnected Signaling Pathways in Human Ovarian Follicles is Supported by the Gene Expression Activity of the Granulosa Cells. Reprod. Sci. 18, 476–484 (2011). https://doi.org/10.1177/1933719110388848

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110388848

Keywords

Navigation