Skip to main content

Advertisement

Log in

Basal and Steroid Hormone-Regulated Expression of CXCR4 in Human Endometrium and Endometriosis

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is associated with activation of local and systemic inflammatory mechanisms, including increased levels of chemokines and other proinflammatory cytokines. We have previously reported increased gene expression of chemokine receptor 4 (CXCR4), the receptor for CXCL12, in lesions of the rat model of endometriosis. The CXCR4-CXCL12 axis has been shown to have both immune (HIV infection, lymphocyte chemotaxis) and nonimmune functions, including roles in tissue repair, angiogenesis, invasion, and migration. There is evidence indicating that these mechanisms are also at play in endometriosis; therefore, we hypothesized that activation of the CXCR4-CXCL12 axis could be responsible, at least in part, for the survival and establishment of endometrial cells ectopically. Immunohistochemistry (IHC) showed that CXCR4 protein levels were significantly higher in endometriotic lesions compared to the endometrium of controls. Next, we determined basal gene and protein expression of CXCR4 and CXCL12 and regulation by estradiol (E2) and/or progesterone (P4) in endometrial cell lines using quantitative polymerase chain reaction (qPCR), and Western blots. Basal CXCR4 gene expression levels were higher in epithelial versus stromal cells; conversely, CXCL12 was expressed at higher levels in stromal vs epithelial cells. CXCR4 gene expression was significantly downregulated by ovarian steroid hormones in endometrial epithelial. These data suggest that steroid modulation of CXCR4 is defective in endometriosis, although the specific mechanism involved remains to be elucidated. These findings have implications for future therapeutic strategies specifically targeting the inflammatory component in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    Article  CAS  PubMed  Google Scholar 

  2. Signorello LB, Harlow BL, Cramer DW, Spiegelman D, Hill JA. Epidemiologic determinants of endometriosis: a hospital-based case-control study. Ann Epidemiol. 1997;7(4):267–741.

    Article  CAS  PubMed  Google Scholar 

  3. Murphy AA. Clinical aspects of endometriosis. Ann N Y Acad Sci. 2002;955:1–10. Discussion 34–6, 396–406..

    Article  PubMed  Google Scholar 

  4. Powitz A, Gaetje R, Zeitvogel A, et al. Tracing cellular and molecular mechanisms involved in endometriosis. Hum Reprod Update. 1998;4(5):724–729.

    Article  Google Scholar 

  5. Montgomery GW, Nyholt DR, Zhao ZZ, et al. The search for genes contributing to endometriosis risk. Hum Reprod Update. 2008;14(5):447–457. Epub 2008 Jun 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witz CA, Thomas MR, Montoya-Rodriguez IA, Nair AS, Centonze VE, Schenken RS. Short-term culture of peritoneum explants confirms attachment of endometrium to intact peritoneal mesothelium. Fertil Steril. 2001;75(2):385–390.

    Article  CAS  PubMed  Google Scholar 

  7. Winterhager E, Fazleabas A, Hillier E. Endometriosis: science and sense. Mol Hum Reprod. 2009;15(10):575.

    Article  PubMed  Google Scholar 

  8. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–469.

    Article  Google Scholar 

  9. Chand AL, Murray AS, Jones RL, Hannan NJ, Salamonsen LA, Rombauts L. Laser capture microdissection and cDNA array analysis of endometrium identify CCL16 and CCL21 as epithelial-derived inflammatory mediators associated with endometriosis. Reprod Biol Endocrinol. 2007;5:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Herrmann Lavoie C, Fraser D, Therriault MJ, Akoum A. Interleukin-1 stimulates macrophage migration inhibitory factor secretion in ectopic endometrial cells of women with endometriosis. Am J Reprod Immunol. 2007;58(6):505–513.

    Article  PubMed  CAS  Google Scholar 

  11. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. Inflammation in reproductive disorders. Reprod Sci. 2009;16(2): 216–229.

    Article  CAS  PubMed  Google Scholar 

  13. Ulukus M, Arici A. Immunology of endometriosis. Minerva Gine-col. 2005;57(3):237–248.

    CAS  Google Scholar 

  14. Nishida M, Nasu K, Fukuda J, Kawano Y, Narahara H, Miyakawa I. Down-regulation of interleukin-1 receptor type 1 expression causes the dysregulated expression of CXC chemo-kines in endometriotic stromal cells: a possible mechanism for the altered immunological functions in endometriosis. J Clin Endocrinol Metab. 2004;89(10):5094–5100.

    Article  CAS  PubMed  Google Scholar 

  15. Agic A, Xu H, Finas D, Banz C, Diedrich K, Hornung D. Is endometriosis associated with systemic subclinical inflammation? Gynecol Obstet Invest. 2006;62(3):139–147. Epub 2006 May 4..

    Article  PubMed  Google Scholar 

  16. Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemo-kine receptor superfamilies and their molecular evolution. Genome Biol. 2006;7(12):243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vandercappellen J, Van Damme J, Struyf S. The role of CXC che-mokines and their receptors in cancer. Cancer Lett. doi:10.1016/ jcanlet.2008.04.050.

  18. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761–1767.

    Article  CAS  PubMed  Google Scholar 

  19. Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta. 2007;1768(4):952–963.

    Article  CAS  PubMed  Google Scholar 

  20. Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824): 50–56.

    Article  PubMed  Google Scholar 

  21. Lee JI, Jin BH, Kim MA, Yoon HJ, Hong SP, Hong SD. Prognostic significance of CXCR-4 expression in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):678–684.

    Article  PubMed  Google Scholar 

  22. Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol. 2005;23(12): 2744–2753.

    Article  CAS  PubMed  Google Scholar 

  23. Rombouts EJ, Pavic B, Löwenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104(2): 550–557.

    Article  CAS  PubMed  Google Scholar 

  24. Franco R, Cantile M, Scala S, et al. Histomorphologic parameters and CXCR4 mRNA and protein expression in sentinel node melanoma metastasis are correlated to clinical outcome. Cancer Biol Ther. 2010;9(6):423–429.

    Article  CAS  PubMed  Google Scholar 

  25. Singh S, Singh UP, Grizzle WE, Lillard JW Jr. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metallopro-teinase expression and invasion. Lab Invest. 2004;84(12): 1666–1676.

    Article  CAS  PubMed  Google Scholar 

  26. Chu CY, Cha ST, Chang CC, et al. Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1 alpha-directed invasion of human basal cell carcinoma cells. Oncogene. 2007;26:2491–2501.

    Article  CAS  PubMed  Google Scholar 

  27. Kollmar O, Rupertus K, Scheuer C, et al. CXCR4 and CXCR7 regulate angiogenesis and CT26.WT tumor growth independent from SDF-1. Int J Cancer. 2010;126(6):1302–1315.

    CAS  PubMed  Google Scholar 

  28. Akoum A, Kong J, Metz C, Beaumont MC. Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil Steril. 2002;77(5):989–994.

    Article  PubMed  Google Scholar 

  29. Arici A, Tazuke SI, Attar E, Kliman HJ, Olive DL. Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod. 1996;2(1):40–45.

    Article  CAS  PubMed  Google Scholar 

  30. Akoum A, Lemay A, McColl S, Turcot-Lemay L, Maheux R. Elevated concentration and biologic activity of monocyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil Steril. 1996;66(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  31. Hornung D, Bentzien F, Wallwiener D, Kiesel L, Taylor RN. Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid. Mol Hum Reprod. 2001;7(2):163–168.

    Article  CAS  PubMed  Google Scholar 

  32. Braundmeier A, Jackson K, Hastings J, Fazleabas A. Endometriosis alters the peripheral expression of regulatory T cells in a non-human primate. Fertil Steril. 2008;90:S85–S85.

    Article  Google Scholar 

  33. Flores I, Rivera E, Ruiz LA, Santiago OI, Vernon MW, Appleyard CB. Molecular profiling of experimental endometriosis identified gene expression patterns in common with human disease. Fertil Steril. 2007;87(5):1180–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furuya M, Suyama T, Usui H, et al. Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol. 2007;38(11):1676–1687.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuzaki S, Canis M, Vaurs-Barrière C, et al. DNA microarray analysis of gene expression profiles in deep endometriosis using laser capture microdissection. Mol Hum Reprod. 2004;10(10): 719–728.

    Article  CAS  PubMed  Google Scholar 

  36. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263.

    Article  CAS  PubMed  Google Scholar 

  37. Hombach-Klonisch S, Kehlen A, Fowler PA, et al. Regulation of functional steroid receptors and ligand-induced responses in telomerase-immortalized human endometrial epithelial cells. J Mol Endocrinol. 2005;34(2):517–534.

    Article  CAS  PubMed  Google Scholar 

  38. Krikum G, Mor G, Alvero A, et al. A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology. 2004;145(5):2291–2296.

    Article  CAS  Google Scholar 

  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PC and the 2-ddCt method. Methods. 2001;25(4):401–408.

    Article  CAS  Google Scholar 

  40. Domínguez F, Galan A, Martin JJ, Remohi J, Pellicer A, Simón C. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol Hum Reprod. 2003;9(4):189–198.

    Article  PubMed  CAS  Google Scholar 

  41. Ness RB. Endometriosis and ovarian cancer: thoughts on shared pathophysiology. Am J Obstet Gynecol. 2003;189(1):280–294.

    Article  PubMed  Google Scholar 

  42. Signorile PG, Baldi F, Bussani R, D’Armiento M, De Falco M, Baldi A. Ectopic endometrium in human foetuses is a common event and sustains the theory of müllerianosis in the pathogenesis of endometriosis, a disease that predisposes to cancer. J Exp Clin Cancer Res. 2009;28(1):49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Baldi A, Campioni M, Signorile PG. Endometriosis: pathogenesis, diagnosis, therapy and association with cancer. Oncol Rep. 2008;19(4):843–846.

    CAS  PubMed  Google Scholar 

  44. Wang L, Wang Z, Yang B, Yang Q, Wang L, Sun Y. CXCR4 nuclear localization follows binding of its ligand SDF-1 and occurs in metastatic but not primary renal cell carcinoma. Oncol Rep. 2009;22(6):1333–1339.

    CAS  PubMed  Google Scholar 

  45. Attia GR, Zeitoun K, Edwards D, Johns A, Carr BR, Bulun SE. Progesterone receptor isoform A but not B is expressed in endometriosis. J Clin Endocrinol Metab. 2000;85(8):2897–2902.

    CAS  PubMed  Google Scholar 

  46. Bulun SE, Cheng YH, Yin P, et al. Progesterone resistance in endometriosis: link to failure to metabolize estradiol. Mol Cell Endocrinol. 2006;248(1–2):94-103.

    PubMed  Google Scholar 

  47. Dominguez F, Galan A, Martin JJ, Remohi J, Pellicer A, Simón C. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol Hum Reprod. 2003;9(4):189–198.

    Article  CAS  PubMed  Google Scholar 

  48. Caballero-Campo P, Domínguez F, Coloma J, et al. Hormonal and embryonic regulation of chemokines IL-8, MCP-1 and RANTES in the human endometrium during the window of implantation. Mol Hum Reprod. 2002;8(4):375–384.

    Article  CAS  PubMed  Google Scholar 

  49. Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583(24): 3966–3973.

    Article  CAS  PubMed  Google Scholar 

  50. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol Biosyst. 2009;5(12):1512–1526.

    PubMed  Google Scholar 

  51. Berson JF, Long D, Doranz BJ, Rucker J, Jirik FR, Doms RW. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol. 1996;70(9):6288–6295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farzan M, Babcock GJ, Vasilieva N, et al. The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J Biol Chem. 2002;277(33):29484–29489. Epub 2002 May 28.

    Article  CAS  PubMed  Google Scholar 

  53. Dominguez F, Pellicer A, Simon C. The chemokine connection: hormonal and embryonic regulation at the human maternal-embryonic interface-a review. Placenta. 2003;24(suppl B): S48–S55.

    Article  CAS  PubMed  Google Scholar 

  54. Kajiyama H, Shibata K, Ino K, Nawa A, Mizutani S, Kikkawa F. Possible involvement of SDF-1 alpha/CXCR4-DPPIV axis in TGF-betal -induced enhancement of migratory potential in human peritoneal mesothelial cells. Cell Tissue Res. 2007;330(2): 221–229.

    Article  CAS  PubMed  Google Scholar 

  55. Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 2003; 198(9):1391–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kubarek L, Jagodzinski PP. Epigenetic up-regulation of CXCR4 and CXCL12 expression by 17 β-estradiol and tamoxifen is associated with formation of DNA methyltransferase 3B4 splice variant in Ishikawa endometrial adenocarcinoma cells. FEBS Lett. 2007;581(7):1441–1448.

    Article  CAS  PubMed  Google Scholar 

  57. Jin C, Fu WX, Xie LP, Qian XP, Chen WF. SDF-lalpha production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cell Immunol. 2003;223(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  58. Fazleabas AT, Brudney A, Chai D. Langoi D, Bulun SE. Steroid receptor and aromatase expression in baboon endometriotic lesions. Fertil Steril. 2003;suppl (2):820–827.

    Article  PubMed  Google Scholar 

  59. Zeitun KM, Bulun SE. Aromatase. A key molecule in the pathophysiology of endometriosis and a therapeutic target. Fertil Steril. 1999;72(6):961–969.

    Article  Google Scholar 

  60. Ness RB, Modugno F. Endometriosis as a model for inflammation-hormone interactions in ovarian and breast cancers. Eur J Cancer. 2006;42(6):691–703.

    Article  CAS  PubMed  Google Scholar 

  61. Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-derived factor-1 alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem. 1998;273(36):23169–23175.

    Article  CAS  PubMed  Google Scholar 

  62. Vaalamo M, Mattila L, Johansson N, et al. Distinct populations of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds. J Invest Dermatol. 1997;109(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  63. Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY. CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 2005;12(1):84–89.

    Article  CAS  PubMed  Google Scholar 

  64. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood. 2005;106(5):1824–1830.

    Article  CAS  PubMed  Google Scholar 

  65. Burger JA, Peled A. CXCR4 antagonists: targeting the microenvir-onment in leukemia and other cancers. Leukemia. 2009;23(1): 43–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idhaliz Flores PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, A., Salvo, V.A., Ruiz, L.A. et al. Basal and Steroid Hormone-Regulated Expression of CXCR4 in Human Endometrium and Endometriosis. Reprod. Sci. 17, 894–903 (2010). https://doi.org/10.1177/1933719110379920

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110379920

Keywords

Navigation