Skip to main content

Advertisement

Log in

Hypoxia and Preeclampsia: Increased Expression of Urocortin 2 and Urocortin 3

  • Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Urocortin 2 (Ucn2) and urocortin 3 (Ucn3) are new members of the corticotrophin-releasing hormone (CRH) family of peptides expressed and localized in human placenta. In the current study, we aimed to asses whether hypoxia affects placental Ucn2/Ucn3 messenger RNA (mRNA) expression and protein localization in physiological or pathological hypoxia and to evaluate whether the effect is modulated by the hypoxia-inducible factor 1α (HIF-1α).

Methods

Early first-trimester placental specimens from elective termination of pregnancy were used for villous explants and term placental tissue were used for primary cell cultures. The samples were incubated under different oxygen conditions; parallel sets exposed to hypoxia re-oxygenation (HR). Dimethyloxalylglycine (DMOG), an HIF-1α stabilizer, was used to mimic the effects of hypoxia in villous explants. Real-time polymerase chain reaction (PCR) and immunohystochemistry were performed on early pregnancy and preeclamptic (PE) placentae. mRNA levels were measured on villous explants and cell cultures incubated under different oxygen and reagent conditions.

Results

Both Ucn2 and Ucn3 mRNA expression was significantly higher at 6 to 9 weeks of gestation than 10 to 12 wks and in primary trophoblast cell cultures and explants exposed to low O2 tension (3%) compared to 20% O2. Strong Ucn2/Ucn3 immunoreactivity was present in trophoblast villi from 6 weeks placentae. Ucn2 immunostaining was stronger in early PE (E-PE) samples relative to controls whereas Ucn3 showed stronger immunoreactivity in late-PE (L-PE) placentae. Only Ucn2 transcript levels increased in HR explants. Ucn2 and Ucn3 expression by first-trimester explants was significantly greater in the presence of DMOG. All PE placentae expressed significantly higher Ucn2 and Ucn3 mRNA compared to controls.

Discussion

Placental Ucn2 and Ucn3 expression is sensitive to O2 tensions and mediated by HIF-1α. During early pregnancy, Ucn2/Ucn3 may influence trophoblast proliferation and establishment of pregnancy. In PE placentae, the increased expression of both peptides may reflect a response to the oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605–611.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A. 2001;19;98(13):7570–7575.

    Article  Google Scholar 

  3. Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98(5):2843–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wetzka B, Sehringer B, Schäfer WR, et al. Expression patterns of CRH, CRH receptors, and CRH binding protein in human gestational tissue at term. Exp Clin Endocrinol Diabetes. 2003;111(3): 154–161.

    Article  CAS  PubMed  Google Scholar 

  5. Imperatore A, Florio P, Torres PB, et al. Urocortin 2 and urocortin 3 are expressed by the human placenta, deciduas, and fetal membranes. Am J Obstet Gynecol. 2006;195(1):288–295.

    Article  CAS  PubMed  Google Scholar 

  6. Janatpour MJ, Utset MF, Cross JC, et al. A repertoire of differentially expressed transcription factors that offers insight into mechanisms of human cytotrophoblast differentiation. Dev Genet. 1999;25(2):146–157.

    Article  CAS  PubMed  Google Scholar 

  7. Kingdom JC, Kaufmann P, Jauniaux E. Oxygen and placental vascular development. Adv Exp Med Biol. 2000;474:259–275.

    Article  Google Scholar 

  8. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–285.

    CAS  PubMed  Google Scholar 

  9. Hung TH, Charnock-Jones DS, Skepper JN, Burton GJ. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol. 2004;164(3):1049–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97(2):540–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21(suppl A): S25–S30.

    Article  PubMed  Google Scholar 

  12. Roberts JM, Hubel CA. Is oxidative stress the link in the two-stage model of pre-eclampsia? Lancet. 1999;354(9181):788–789.

    Article  CAS  PubMed  Google Scholar 

  13. Walker JJ. Pre-eclampsia. Lancet. 2000;356(9237): 1260–1265 [Review].

    Article  CAS  PubMed  Google Scholar 

  14. Caniggia I, Mostachfi H, Winter J, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest. 2000;105(5):577–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Metzen E, Ratcliffe PJ. HIF hydroxylation and cellular oxygen sensing. Biol Chem. 2004;385(3–4):223–230.

    CAS  PubMed  Google Scholar 

  16. Ten VS, Pinsky DJ. Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care. 2002;8(3):242–250.

    Article  PubMed  Google Scholar 

  17. Chen A, Blount A, Vaughan J, Brar B, Vale W. Urocortin II gene is highly expressed in mouse skin and skeletal muscle tissues: localization, basal expression in corticotropin-releasing factor receptor (CRFR) 1- and CRFR2-null mice, and regulation by glucocorticoids. Endocrinology. 2004;145(5):2445–2457.

    Article  CAS  PubMed  Google Scholar 

  18. Jain V, Longo M, Ali M, Saade GR, Chwalisz K, Garfield RE. Expression of receptors for corticotropin-releasing factor in the vasculature of pregnant rats. J Soc Gynecol Investig. 2000;7(3): 153–160.

    Article  CAS  PubMed  Google Scholar 

  19. Mackay KB, Stiefel TH, Ling N, Foster AC. Effects of a selective agonist and antagonist of CRF2 receptors on cardiovascular function in the rat. Eur J Pharmacol. 2003;469(1–3):111–115.

    Article  CAS  PubMed  Google Scholar 

  20. Coste SC, Kesterson RA, Heldwein KA, et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24(4):403–409.

    Article  CAS  PubMed  Google Scholar 

  21. Gardiner SM, March JE, Kemp PA, Bennett T. A comparison between the cardiovascular actions of urocortin 1 and urocortin 2 (stresscopin-related peptide) in conscious rats. J Pharmacol Exp Ther. 2007;321(1):221–226.

    Article  CAS  PubMed  Google Scholar 

  22. Chanalaris A, Lawrence KM, Stephanou A, et al. Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. J Mol Cell Cardiol. 2003;35(10):1295–1305.

    Article  CAS  PubMed  Google Scholar 

  23. Tao J, Zhang Y, Soong TW, Li S. Urocortin II inhibits the apoptosis of mesenteric arterial smooth muscle cells via L-type calcium channels in spontaneously hypertensive rats. Cell Physiol Biochem. 2006;17(3–4):111–120.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi K, Totsune K, Murakami O, et al. Expression of urocortin III/stresscopin in human heart and kidney. J Clin Endocrinol Metab. 2004;89(4):1897–1903.

    Article  CAS  PubMed  Google Scholar 

  25. Florio P, Franchini A, Reis FM, Pezzani I, Ottaviani E, Petraglia F. Human placenta, chorion, amnion and decidua express different variants of corticotropin-releasing factor receptor messenger RNA. Placenta. 2000;21(1):32–37.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy DJ, Stirrat GM. Mortality and morbidity associated with early-onset preeclampsia. Hypertens Pregnancy. 2000;19(2):221–231.

    Article  CAS  PubMed  Google Scholar 

  27. von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy. 2003;22(2):143–148.

    Article  Google Scholar 

  28. ACOG Committee on Practice Bulletin—Obstetric. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol. 2002;99(1):159–167.

    Article  Google Scholar 

  29. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss III JF. Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placenta. Endocrinology. 1986;118(4):1567–1582.

    Article  CAS  PubMed  Google Scholar 

  30. Sun K, Yang K, Challis JRG. Differential regulation of 11 beta-hydroxysteroid dehydrogenase type 1 and 2 by nitric oxide in cultured human placental trophoblast and chorionic cell preparation. Endocrinology. 1997;138(11):4912–4920.

    Article  CAS  PubMed  Google Scholar 

  31. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–472.

    Article  CAS  PubMed  Google Scholar 

  32. Ietta F, Wu Y, Winter J, et al. Dynamic HIF-1alpha regulation during human placental development. Biol Reprod. 2006;75(1): 112–121.

    Article  CAS  PubMed  Google Scholar 

  33. Hung TH, Skepper JN, Charnock-Jones DS, Burton GJ. Hypoxiareoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res. 2002;90(12):1274–1281.

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  35. Ietta F, Wu Y, Romagnoli R, et al. Oxygen regulation of macrophage migration inhibitory factor in human placenta. Am J Physiol Endocrinol Metab. 2007;292(1):E272–E280.

    Article  CAS  PubMed  Google Scholar 

  36. Banerjee S, Smallwood A, Moorhead J, et al. Placental expression of interferon-gamma (IFN-gamma) and its receptor IFN-gamma R2 fail to switch from early hypoxic to late normotensive development in preeclampsia. Clin Endocrinol Metab. 2005;90(2): 944–952.

    Article  CAS  Google Scholar 

  37. Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP. Expression of inflammatory cytokines in placentas from women with preeclampsia. Clin Endocrinol Metab. 2001;86(6): 2505–2512.

    CAS  Google Scholar 

  38. Munaut C, Lorquet S, Pequeux C, et al. Hypoxia is responsible for soluble vascular endothelial growth factor receptor-1 (VEGFR-1) but not for soluble endoglin induction in villous trophoblast. Hum Reprod. 2008;23(6):1407–1415.

    Article  CAS  PubMed  Google Scholar 

  39. Nevo O, Soleymanlou N, Wu Y, et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1085–R1093.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Imperatore PhD, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imperatore, A., Rolfo, A., Petraglia, F. et al. Hypoxia and Preeclampsia: Increased Expression of Urocortin 2 and Urocortin 3. Reprod. Sci. 17, 833–843 (2010). https://doi.org/10.1177/1933719110373147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110373147

Keywords

Navigation